

Math 252
Midterm 2
Spring 2019
Comment (2023): this exam is from an older version of this course, taught at Brown. There are some differences of style and emphasis compared to Math 252 here. Problems about topics we have not discussed are crossed out in this document.

Also note that four-function calculators were permitted on this exam, so it requires some arithmetic that I would not expect you to do by hand.

NAME: \qquad

Read This First!

- Keep cell phones off and out of sight.
- Do not talk during the exam.
- You are allowed one page of notes, front and back.
- You may use a calculator, but you are expected to use only the four arithmetic functions, in order to be fair to students with a four-function calculator. Clearly write the calculations you have done on the page.
- You may use any of the blank pages to continue answers if you run out of space. Please clearly indicate on the problem's original page if you do so, so that I know to look for it.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.

Grading - For Instructor Use Only

Question:	1	2	3	4	Total
Points:	7	7	7	7	28
Score:					

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).

1. [7 points] You may omit; Elliptic curves will not appear on our midterm 2. Consider the elliptic curve over \mathbb{F}_{11} defined by the following congruence.

$$
Y^{2} \equiv X^{3}+7 X+9 \quad(\bmod 11)
$$

The point $P=(2,3)$ lies on this curve (you do not need to check this). Compute $P \oplus P \oplus P$ on this curve.

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).
2. [7 points] You are using DSA with the following parameters (see the DSA summary at the back of the exam packet for notation).

$$
p=23 \quad q=11 \quad g=2
$$

Your private key is $a=3$. You wish to sign the document $d=4$, and choose the random (ephemeral) element $k=8$. Compute the signature (S_{1}, S_{2}).

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).
3. [7 points] Eve has recently succeeded in writing an efficient factoring algorithm, and has decided to use it for nefarious purposes. Her algorithm is written in a function factor (\mathbb{N}), which takes an integer $N \geq 2$ as input and returns some prime factor of N.

Write a function breakRSA(N, e, c) that takes Bob's public numbers N and e and a ciphertext c sent to Bob by Alice, and returns Alice's plaintext m (notation as in the summary table at the back of the exam packet). Your function may use Eve's new factor function, as well as any built-in functions in Python (such as pow ($\mathrm{a}, \mathrm{b}, \mathrm{m}$), which efficiently computes $a^{b}(\bmod m)$). You should write the code for any other helper functions you use that are not built in to Python.

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).
4. [7 points] Comment (2023) This problem originally referred to ECDSA, which we have not yet discussed this semester. I've rewritten it slightly to refer to DSA instead. Samantha and Victor agree to the following digital signature scheme. The public parameters and key creation are identical to DSA (see the table at the back of the exam packet for details and notation). The verification process is different. As in DSA, Victor begins by computing the following two numbers.

$$
\begin{aligned}
& v_{1}=d s_{2}^{-1} \quad(\bmod q) \\
& v_{2}=s_{1} s_{2}^{-1} \quad(\bmod q)
\end{aligned}
$$

Victor considers a signature $\left(s_{1}, s_{2}\right)$ valid if and only if the following verification equation holds.

$$
x\left(v_{1} V \bigcirc v_{2} G\right) \bmod q \equiv s_{1}
$$

$$
A^{v_{1}} g^{-v_{2}} \% p \% q=s_{1}
$$

Determine a signing procedure that Samantha can follow to sign a chosen document d for this system.

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).

Reference tables from textbook:

Public parameter creation	
A trusted party chooses and publishes a (large) prime p and an integer g having large prime order in \mathbb{F}_{p}^{*}.	
Private computations	
Alice	Bob
Choose a secret integer a. Compute $A \equiv g^{a}(\bmod p)$.	Choose a secret integer b. Compute $B \equiv g^{b}(\bmod p)$.
Public exchange of values	
Further private computations	
Alice	Bob
Compute the number $B^{a}(\bmod p)$. The shared secret value is $B^{a} \equiv$	Compute the number $A^{b}(\bmod p)$. $\left(g^{b}\right)^{a} \equiv g^{a b} \equiv\left(g^{a}\right)^{b} \equiv A^{b}(\bmod p) .$

Table 2.2: Diffie-Hellman key exchange

Bob	Alice	
Key creation		
Choose secret primes p and q. Choose encryption exponent e with $\operatorname{gcd}(e,(p-1)(q-1))=1$. Publish $N=p q$ and e.		
Encryption		
Choose plaintext m. Use Bob's public key (N, e) to compute $c \equiv m^{e}(\bmod N)$. Send ciphertext c to Bob.		
Compute d satisfying $e d \equiv 1(\bmod (p-1)(q-1))$.		
Compute $m^{\prime} \equiv c^{d}(\bmod N)$. Then m^{\prime} equals the plaintext m.		

Table 3.1: RSA key creation, encryption, and decryption

Public parameter creation	
A trusted party chooses and publishes a large prime p and primitive root g modulo p.	
Samantha	Victor
Key creation	
Choose secret signing key $1 \leq a \leq p-1$ Compute $A=g^{a}(\bmod p)$. Publish the verification key A.	
Signing	
Choose document $D \bmod p$. Choose random element $1<k<p$ satisfying $\operatorname{gcd}(k, p-1)=1$. Compute signature $\begin{aligned} & S_{1} \equiv g^{k}(\bmod p) \text { and } \\ & S_{2} \equiv\left(D-a S_{1}\right) k^{-1}(\bmod p-1) \end{aligned}$	
Verification	
	Compute $A^{S_{1}} S_{1}^{S_{2}} \bmod p$. Verify that it is equal to $g^{D} \bmod p$.

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation	
A trusted party chooses and publishes a large prime p and an element g modulo p of large (prime) order.	
Alice	Bob
Key creation	
Choose private key $1 \leq a \leq p-1$. Compute $A=g^{a}(\bmod p)$. Publish the public key A.	
Encryption	
	Choose plaintext m. Choose random element k. Use Alice's public key A to compute $c_{1}=g^{k}(\bmod p)$ and $c_{2}=m A^{k}(\bmod p)$. Send ciphertext $\left(c_{1}, c_{2}\right)$ to Alice.
Decryption	
Compute $\left(c_{1}^{a}\right)^{-1} \cdot c_{2}(\bmod p)$. This quantity is equal to m.	

Table 2.3: Elgamal key creation, encryption, and decryption

Samantha	Key creation
Choose secret primes p and q. Choose verification exponent e with $\operatorname{gcd}(e,(p-1)(q-1))$ Publish $N=p q$ and e. Signing Compute d satisfying $d e \equiv 1(\bmod (p-1)(q-1))$. Sign document D by computing $S \equiv D^{d}(\bmod N)$. Verification \quadCompute $S^{e} \bmod N$ and verify that it is equal to D.	

Table 4.1: RSA digital signatures

Public parameter creation	
A trusted party chooses and publishes large primes p and q satisfying $p \equiv 1(\bmod q)$ and an element g of order q modulo p.	
Samantha	Victor
Key creation	
Choose secret signing key $1 \leq a \leq q-1$ Compute $A=g^{a}(\bmod p)$. Publish the verification key A.	
Signing	
Choose document $D \bmod q$. Choose random element $1<k<q$. Compute signature $\begin{aligned} & S_{1} \equiv\left(g^{k} \bmod p\right) \bmod q \text { and } \\ & S_{2} \equiv\left(D+a S_{1}\right) k^{-1}(\bmod q) . \end{aligned}$	
Verification	
	$\begin{aligned} & \text { Compute } V_{1} \equiv D S_{2}^{-1}(\bmod q) \text { and } \\ & V_{2} \equiv S_{1} S_{2}^{-1}(\bmod q) . \\ & \text { Verify that } \\ & \quad\left(g^{V_{1}} A^{V_{2}} \bmod p\right) \bmod q=S_{1} . \end{aligned}$

Table 4.3: The digital signature algorithm (DSA)

Table 6.5: Diffie-Hellman key exchange using elliptic curves

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)

You may use the rest of this page for scratchwork or to continue answers to any question (note clearly on the original page if you do so)

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).

This page intentionally left blank. You may use it for scratchwork or to continue answers to any question (note clearly on the original page if you do so).

