Note The due date for this assignment is Friday $5 / 5$, so that it will not be due too soon after the Midterm. However, the last problem set will be due soon after, on Tuesday 5/9 (the last day of class). It will be posted by Wednesday $5 / 3$. So I would recommend doing as much of this one as possible by Wednesday to leave time to move on to the next. The last set will be a bit shorter, however.

Written problems:

1. Textbook exercise 6.1 (Elliptic curve arithmetic over \mathbb{R})
2. Textbook exercise 6.5, parts (a) and (b) (Listing the points of an EC over $\mathbb{Z} / p \mathbb{Z}$)

Hint. You can save some time by making two lists in advance: values of y^{2} for various y and values of $x^{3}+A x+B$ for various values of x, then checking for numbers occurring in both lists)
3. Textbook exercise 6.6(a) (addition table for an elliptic curve over $\mathbb{Z} / 5 \mathbb{Z}$)
4. Textbook exercise 6.9 (listing all solutions n to an equation $Q=n \cdot P$ on an elliptic curve).
5. Textbook exercise 6.16. (A more concise way to send EC points; you should read Proposition 2.26 to do part (b))

Programming problems:

1. Write a function ecAdd ($\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{p}$) to compute the sum $P \oplus Q$ of two points on the Elliptic Curve over $\mathbb{Z} / p \mathbb{Z}$ defined by $Y^{2} \equiv X^{3}+A X+B(\bmod p)$. You may assume that P and Q are both valid points on the curve ${ }^{1}$. The points P and Q will be either pairs (x, y) of elements of $\mathbb{Z} / p \mathbb{Z}$, or the integer 0 (as a stand-in for the point \mathcal{O} at infinity), and the function should return the result in the same format.
2. Write a function ecMult ($\mathrm{n}, \mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{p}$) that computes an integer multiple $n \cdot P$ of a point P on an elliptic curve $Y^{2} \equiv X^{3}+A X+B(\bmod p)$. Points will be formatted (x, y), with $0 \leq x, y<p$, while the point at infinity should be denoted simply as 0 . Your code will need to be able to scale to very large values of n; I suggest adapting the fast-powering algorithm from modular arithmetic to elliptic curves.
[^0]
[^0]: ${ }^{1}$ Though of course if you were using this code in real life, you should add some error handling that checks this.

