
Problem Set 6 Math 252, Spring 2023

Written problems:

1. Let f, g, h be postitive-valued functions, and assume that h(x) ≥ 1 for all x. Prove that if
f(x) = O(h(x)) and g(x) = O(1), then f(x) + g(x) = O(h(x)) and f(x)g(x) = O (h(x)).

2. For any positive integer n, denote by B(n) the number of bits of n. In other words, B(n) is
the unique integer such that

2B(n)−1 ≤ n < 2B(n).

(a) Let f(n) be a function from positive integers to positive real numbers. Prove that
f(n) = O(n) if and only if f(n) = O

(
2B(n)

)
.

(b) Prove that f(n) = O(
√
n) if and only if f(n) = O

(√
2
B(n)

)
.

(c) Let d be a positive integer. Prove that f(n) = O((log n)d) if and only if f(n) =
O
(
B(n)d

)
.

3. This problem considers a slighlty more general form of babystep-giantstep, in which the
babystep list and giantstep list need not have the same length. Let p be a prime number, and
let g, h be two units modulo p. Suppose that two positive integers M,N are chosen, and we
construct two lists as follows.

• The babystep list consists of gi mod p for i = 0, 1, · · · ,M − 1.

• The giantstep list consists of hg−Mj mod p for j = 0, 1, · · · , N − 1.

(a) Prove that there is a collision between these two lists if and only if there exists a solution
x to the discrete logarithm problem gx ≡ h (mod p) with 0 ≤ x < MN .

(b) Under what circumstances will there be multiple collisions between the two lists?

(c) Suppose that M,N are chosen such that MN ≥ ordp(g), and further suppose that the
lists do not collide. Prove that the discrete logarithm problem gx ≡ h (mod p) has no
solution.

4. Solve each system of congruences. Your answer should take the form of a single congruence
of the form x ≡ c (mod m) describing all solutions to the system.

(a) x ≡ 1 (mod 3)
x ≡ 2 (mod 5)

(b) x ≡ 6 (mod 11)
x ≡ 2 (mod 10)

(c) x ≡ 2 (mod 3)
x ≡ 1 (mod 10)
x ≡ 3 (mod 7)

(d) x ≡ 6 (mod 8)
x ≡ 3 (mod 9)
x ≡ 0 (mod 17)

due Friday 3/24 by 10pm. page 1 of 2



Problem Set 6 Math 252, Spring 2023

Programming problems:

1. Implement the Babystep-Giantstep algorithm, efficiently enough to solve the discrete loga-
rithm problem for primes up to 40 bits in length. That is, write a function bsgs(g,h,p) that
finds an integer x such that gx ≡ h (mod p). You may assume that p is prime, 1 ≤ g, h < p,
and that a solution x exists.

The test bank on Gradescope will be identical to the test bank for disclog on Problem Set
2, but now your code must solve all 40 cases for full credit.

(It is fine to implement any algorithm you can devise to solve the discrete logarithm problem,
but BSGS is probably the easiest to implement based on what we’ve discussed in class.)

Note If implemented a certain way, your solution to this problem can be almost
exactly identical to your solution to the following problem, and indeed can consist of
a one-line call to the function you write for the following problem.

2. Write function bsgsBoundedOrder(g,h,p,N) to solve the discrete logarithm function gx ≡ h
(mod p) under the assumption that the order of g is at most N . You may assume that p is a
prime number, but unlike the previous problem it will be quite large (256 bits). The integer
N will be various sizes, up to 40 bits. Any correct solution x will be marked correct, even if
it is not the smallest possible solution.

Note The time limit is set to 1 second on Gradescope as usual, which may be slightly
tight on the largest cases. Let me know if you are running into the time limit so that
I can suggest improvements. I may extend the time limit if it seems that generally
efficient implementations are not quite meeting it.

3. Suppose that you are given two integers m1,m2 with gcd(m1,m2) = 1, and two integers
a1, a2. Write a function crt(a1,m1,a2,m2) that efficiently determines the unique integer x
such that

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

and 0 ≤ x < m1m2. The fact that x exists and is unique comes from the Chinese Remainder
Theorem.

4. (This will be an ingredient in the Pohlig-Hellman algorithm, to be discussed soon) Write a
function ppFactor(N) which accepts an integer N ≥ 2, and returns a list of the prime powers
(all powers of different primes) factoring N , in any order. For example, if N = 12 the function
should return either [4,3] or [3,4]. The integer N may be quite large (up to 1024 bits),
but you may assume that all of the prime-power factors are 16 bits or smaller.

Suggested approach: There are many ways to do this, and certainly many more efficient than
what I’m about to describe, but here is one relatively quick-to-implement approach. Write a
for loop to iterate through all numbers p from 2 to 216. For each number, check whether it
divides N . If so, divide N by p repeatedly until it is no longer divisible by p (and replace N
by the new value), then add the appropirate power of p to the list you will eventually return.
As long as you shrink N as you go, you will never find that p | N unless p is in fact prime,
since any smaller factor would have already been found to divide N .

due Friday 3/24 by 10pm. page 2 of 2


