
Problem Set 9 Math 252, Spring 2023

Written problems:

1. Textbook exercise 4.6 (ElGamal signature examples)

2. Textbook exercise 4.10 (DSA verification examples)

3. Textbook exercise 4.7 (ElGamal “blind signatures”)

4. This problem explores the reasons why the primes p and q is DSA can be chosen to have
somewhat different sizes.

Suppose that p, q, g are DSA public parameters (i.e. p, q are primes, and g has order q modulo
p), and A ≡ ga (mod p) is Samantha’s public (verification) key, while a is her private (signing)
key. As we discussed in class, there are two main sorts of algorithms that Eve might use to
extract a from A: collision algorithms (whose runtime depends on q), and the number field
sieve (whose runtime depends on p). For simplicity, assume that Eve has a collision algorithm
that can extract a in

√
q steps, and an implementation of the number field sieve (a state of

the art DLP algorithm; you do not need to know any details about it, but the textbook has a
good overview) that can extract a in e2(ln p)1/3(ln ln p)2/3 steps (the true runtimes would involve
a constant factor that would depend on implementation, and various other factors depending
on the cost of arithmetic modulo p and of finding collisions).

(a) Suppose that Samantha is confident that her private key will be safe as long as Eve does
not have time to perform more than 264 steps in either algorithm. How many bits long
should she choose p to be? How many bits long should q be?

(b) What if she instead wants to be safe as long as Eve doesn’t have time for 2128 steps?

(c) The NSA’s recommendation for “Top Secret” government communications is to use 3072
bit values of p, and 384 bit values of q. How does this compare to your answers above?
If the difference is significant, what might explain the discrepancy?

For parts (a) and (b), it is sufficient to write a short script to find the minimum safe numbers
of bits by trial and error (there are more efficient ways, of course).

Programming problems:

1. Write a function verifyDSA(p,q,g,A,d,s1,s2) that verifies DSA signatures. Here, p, q, g
are public parameters, A is the public (verification) key, d is the document, and (s1, s2) is the
signature. The function should return True or False.

2. When using ElGamal digital signatures, it is essential that Samantha always generates her
ephemeral key at random (much like in ElGamal encryption). In this problem, you will study
why it is particularly dangerous to use the same ephemeral key twice. You will be given the
public ElGamal parameters p,g, Alice’s public key A, two documents d1,d2, and valid sig-
natures (s11,s12),(s21,s22) for the two documents (respectively). The two signatures were
generated using the same ephemeral key. Write a function extractKey(p,g,A,d1,s11,s12,d2,s21,s22)
that extracts and returns Alice’s private key a from this information.

Hint: if you carefully manipulate the two congruences Samantha used to sign the documents,
you can derive a congruence of the form ma ≡ b (mod p− 1), where m and b are values you
can compute and a is the private key that you are trying to find. Unfortunately, it is possible
that m is not invertible modulo p − 1. You can use the solution to an earlier problem to
“solve” this congruence to obtain a congruence that may not determine a uniquely; you’ll
need to figure out how to get from here to the specific value of a.
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