Note (2024): this exam is from an older version of this course, and is a bit longer and more difficult than our exam is likely to be.

- 1. [10 points] Consider the elliptic curve $Y^2 = X^3 + X 1$ over $\mathbb{Z}/5\mathbb{Z}$.
 - (a) Determine the number of points on this curve (including the point \mathcal{O}).
 - (b) Determine the order of the point P = (1, 1).
- 2. [10 points] Explain briefly why each of the following choices is made in DSA. Be specific about which mathematical facts would make the algorithm either incorrect or insecure otherwise.
 - (a) The number q is a *prime* number.
 - (b) The numbers p, q satisfy $p \equiv 1 \pmod{q}$.
 - (c) The number k is selected at random.
- 3. [10 points] Alice's RSA public key has modulus N. Bob cannot remember whether her encrypting exponent is 16 or 27. In a well-meaning but very foolish blunder, he decides to encrypt his message m with both possible encrypting exponents, creating c_1 (using e = 16) and c_2 (using e = 27). Bob uses the correct modulus N in both cases. He then sends both c_1 and c_2 to Alice, with an explanation of what happened. Eve intercepts c_1 and c_2 , as well as the information of which exponent was used to create which ciphertext.

Express m in terms of c_1 and c_2 using arithmetic modulo N. This will show that Eve can learn the plaintext m without much effort.

4. [10 points] The following function definition is meant to calculate the sum of two points P, Q on the elliptic curve $Y^2 = X^3 + AX + B$ over $\mathbb{Z}/p\mathbb{Z}$, but it contains a flaw. Explain the case in which the code will not work properly, and how to fix it.

Assumptions: each point (P, Q) or the return value) is either a pair (x, y) of two integers with $0 \le x, y < p$, or the number 0 (for the point \mathcal{O}). You may assume that both P and Q do in fact lie on the curve defined by A and B. Also assume that $inv_mod(a,m)$ is a correctly implemented function that returns the inverse of a modulo m whenever a is a unit modulo m, but which results in an error if a is not a unit modulo m.

```
def add(P,Q,A,B,p):
if P==0: return Q
if Q==0: return P
if P[0] == Q[0] and P[1] != Q[1]: return 0
if P[0] != Q[0]:
    rise = (P[1] - Q[1]) % p
    run = (P[0] - Q[0]) % p
else:
    rise = (3*P[0]*P[0] + A) % p
    run = (2*P[1]) % p
slope = (rise*inv_mod(run,p)) % p
y_int = (P[1] - P[0]*slope) % p
```

x = (slope*slope - P[0]-Q[0]) % p y = (-(slope*x + y_int)) % p return (x,y)

- 5. [10 points] Write a function pickg(p,q) with the following behavior: if p, q are both prime numbers, then the return value must be either a number a between 1 and p-1 inclusive with order q modulo p, or the number -1 if no such integer a exists. Your function may be randomized. For full points the (expected value of the) number of arithmetic operations performed by the function must be $\mathcal{O}(\log p)$.
- 6. [10 points] Suppose that Samantha is using ECDSA parameters with q = 7. She has published two valid signatures: (2,3) for the document d = 4, and (2,6) for the document d' = 5. Eve learns that she used the same random element e to produce both signatures. Determine Samantha's secret signing key, s.

Note. I am withholding the information of Samantha's public key and the system parameters for this problem, since the numbers are small enough that a brute force solution would be possible. In reality, of course, Eve would know all of this, but q would also be large enough that brute force would not be feasible.

- 7. [10 points] Suppose that Eve has intercepted a ciphertext from Bob to Alice. In addition, she knows by other means that the plaintext is one of only 1000 possibilities (for example, it might specify a landmark where Alice and Bob will meet, written in a predictable format and chosen from a short list of options). As usual, Eve knows Alice's public key, but not her private key.
 - (a) Suppose that the cryptosystem being used is RSA. Explain how Eve can very quickly identify for certain which of the 1000 candidates is the true plaintext.
 - (b) Suppose that the cryptosystem being used is Menezes-Vanstone (table 6.13). Describe a procedure Eve could use that, with very high probability, will pick out the correct plaintext from the list. (More formally: your procedure should have the property that if the 999 false plaintexts were chosen uniformly at random, then the probability of choosing one of them should be negligible.)
- 8. [10 points] Note (2024): This problem concerns a cryptosystem we did not discuss this semester. The NTru procedure (table 7.4) stipulates that p and q should be chosen such that gcd(p,q) = 1. Suppose that parameters are chosen that do not obey this rule, and instead $p \mid q$. In this case, the system is completely insecure. Write a function that Eve could use to can break it.

Specifically: write a function extract(e,N,p,q,d,h) that efficiently extracts the plaintext **m** from any cipher text **e**, given only the public key and system parameters, and assuming that p divides q. The arguments **e** and **h** will be given as lists of N integers. The coefficients in your answer should be either centerlifted modulo p or reduced modulo p in the typical way.

9. [10 points] Suppose that P, Q are two points on an elliptic curve over $\mathbb{Z}/9719\mathbb{Z}$ (the number p = 9719 is prime). The order of the elliptic curve is a prime number q, and neither P nor Q

is \mathcal{O} . Alice has constructed the following two lists of points.

$$\begin{bmatrix} \mathcal{O}, \ P, \ 2P, \ \cdots, \ 99P \end{bmatrix}$$
$$\begin{bmatrix} Q, \ Q \ominus 100P, \ Q \ominus 200P, \ \cdots, \ Q \ominus 9900P \end{bmatrix}$$

Prove that there must exist a common element between these two lists, and describe how finding this common element can be used to find an integer n such that Q = nP.

- 10. [10 points] Note (2024): This problem concerns a cryptosystem we did not discuss this semester. Suppose that the NTru cryposystem (Table 7.4) is modified in the following ways.
 - The single integer d in the parameters is replaced with three integers d_1, d_2, d_3 such that $d_1 > d_2 > d_3$. The requirement that q > (6d + 1)p is removed.
 - When Alice chooses \mathbf{f} , she chooses it from $\mathcal{T}(d_1+1, d_1)$.
 - When Alice chooses \mathbf{g} , she chooses it from $\mathcal{T}(d_2, d_2)$.
 - When Bob chooses \mathbf{r} , he chooses it from $\mathcal{T}(d_3, d_3)$.

Derive an inequality of the form " $q > \cdots$ " (to replace q > (6d + 1)p from the original version) in terms of d_1, d_2, d_3 (not all three of which must necessarily be used) and the other public parameters, such that decryption is guaranteed to succeed as long as this inequality holds.

11. [15 points] Samantha and Victor agree to the following digital signature scheme. The public parameters and key creation are identical to those of ECDSA. The verification procedure is different: to decide whether (s_1, s_2) is a valid signature for a document d, Victor computes

$$w_1 \equiv s_1^{-1}d \pmod{q}$$

$$w_2 \equiv s_1^{-1}s_2 \pmod{q},$$

then he check to see whether or not

$$x(w_1G \oplus w_2V)\% q = s_1.$$

If so, he regards (s_1, s_2) as a valid signature for d.

- (a) Describe a signing procedure that Samantha can follow to produce a valid signature on a given document *d*. The procedure should be randomized in such a way that it will generate different signatures if executed repeatedly on the same document.
- (b) Describe a forgery procedure that Eve can follow to create a signature (s_1, s_2) and a document d such that (s_1, s_2) is a valid signature for d under this scheme. Note that Eve does not need to be able to choose d in advance. The procedure should be randomized in such a way that it can generate many different forgeries (on many different documents).
- 12. [15 points] Note (2024): this problem concerns a factoring procedure we did not discuss this semester. Suppose that n is an odd integer such that exactly $\frac{1}{32}$ of all units modulo n are squares (i.e. are congruent to some integer square modulo n). Alice wishes to factor n. Suppose that Alice chooses m distinct elements a_1, a_2, \dots, a_m of $\{1, 2, \dots, \frac{n-1}{2}\}$ at random.

- (a) Suppose that Alice discovers that $a_i^2 \equiv a_j^2 \pmod{n}$ for some $i \neq j$. Write a function factor(n,ai,aj) which returns a proper factor (i.e. a factor besides 1 or n) of n given the values a_i and a_j whose squares are congruent. For full credit, your function should perform no more than $\mathcal{O}(\log n)$ arithmetic operations.
- (b) Assuming that all *m* of these elements a_i are (distinct) units modulo *n*, prove that the probability that $a_i^2 \equiv a_j^2 \pmod{n}$ for some $i \neq j$ is at least $1 e^{-32\binom{m}{2}/\phi(n)}$. You may assume without proof that $e^{-x} \geq 1 x$ for all real numbers *x*. You may also assume that the values $a_i^2 \pmod{n}$ is equally likely to be any of the squares modulo *n*.
- (c) Suppose that the assumption in part (b) fails, and in fact one of the a_i is not a unit modulo n. This is a feature, not a bug: describe how Alice can quickly find a proper factor of n in this case, before she even looks for any collisions.

Public parameter creation		
A trusted party chooses and publishes a (large) prime p		
and an integer g having large prime order in \mathbb{F}_p^* .		
Private con	mputations	
Alice Bob		
Choose a secret integer <i>a</i> . Choose a secret integer <i>b</i> .		
Compute $A \equiv g^a \pmod{p}$. Compute $B \equiv g^b \pmod{p}$.		
Public exchange of values		
Alice sends A to Bob $\longrightarrow A$		
$B \leftarrow$ Bob sends B to Alice		
Further private computations		
Alice Bob		
Compute the number $B^a \pmod{p}$.	Compute the number $A^b \pmod{p}$.	
The shared secret value is $B^a \equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}$.		

Table 2.2: Diffie–Hellman key exchange

Public parameter creation		
A trusted party chooses and publishes a large prime p		
and an element g module	p p of large (prime) order.	
Alice Bob		
Key ci	reation	
Choose private key $1 \le a \le p-1$.		
Compute $A = g^a \pmod{p}$.		
Publish the public key A .		
Encryption		
Choose plaintext m.		
Choose random element k .		
Use Alice's public key A		
	to compute $c_1 = g^k \pmod{p}$	
	and $c_2 = mA^k \pmod{p}$.	
	Send ciphertext (c_1, c_2) to Alice.	
Decryption		
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.		
This quantity is equal to m .		

Table 2.3: Elgamal key creation, encryption, and decryption

Bob	Alice	
Key creation		
Choose secret primes p and q .		
Choose encryption exponent e		
with $gcd(e, (p-1)(q-1)) = 1$.		
Publish $N = pq$ and e .		
Encryption		
	Choose plaintext m .	
	Use Bob's public key (N, e)	
	to compute $c \equiv m^e \pmod{N}$.	
	Send ciphertext c to Bob.	
Decryption		
Compute <i>d</i> satisfying		
$ed \equiv 1 \pmod{(p-1)(q-1)}.$		
Compute $m' \equiv c^d \pmod{N}$.		
Then m' equals the plaintext m .		

Table 3.1: RSA key creation, encryption, and decryption

Samantha	Victor	
Key creation		
Choose secret primes p and q .		
Choose verification exponent e		
with		
gcd(e, (p-1)(q-1)) = 1.		
Publish $N = pq$ and e .		
Signing		
Compute d satisfying		
$de \equiv 1 \pmod{(p-1)(q-1)}.$		
Sign document D by computing		
$S \equiv D^d \pmod{N}.$		
Verification		
	Compute $S^e \mod N$ and verify	
	that it is equal to D .	

Table 4.1: RSA digital signatures

Public parameter creation		
A trusted party chooses and publishes a large prime p		
and primitive root $g \mod p$.		
Samantha	Victor	
Кеу сі	reation	
Choose secret signing key		
$1 \le a \le p - 1.$		
Compute $A = g^a \pmod{p}$.		
Publish the verification key A .		
Signing		
Choose document $D \mod p$.		
Choose random element $1 < k < p$		
satisfying $gcd(k, p-1) = 1$.		
Compute signature		
$S_1 \equiv g^k \pmod{p}$ and		
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}.$		
Verification		
	Compute $A^{S_1}S_1^{S_2} \mod p$.	
	Verify that it is equal to $g^D \mod p$.	

	Table 4.2:	The	Elgamal	digital	signature	algorithm
--	------------	-----	---------	---------	-----------	-----------

Public parameter creation		
A trusted party chooses and publishes large primes p and q satisfying		
$p \equiv 1 \pmod{q}$ and an elem	nent g of order q modulo p .	
Samantha Victor		
Key creation		
Choose secret signing key		
$1 \le a \le q - 1.$		
Compute $A = g^a \pmod{p}$.		
Publish the verification key A .		
Signing		
Choose document $D \mod q$.		
Choose random element $1 < k < q$.		
Compute signature		
$S_1 \equiv (g^k \mod p) \mod q$ and		
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$		
Verifi	cation	
	Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and	
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}.$	
	Verify that	
	$(g^{V_1}A^{V_2} \mod p) \mod q = S_1.$	

Table 4.3: The digital signature algorithm (DSA)

Public parameter creation		
A trusted party chooses and publishes a (large) prime p ,		
an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.		
Private computations		
Alice Bob		
Chooses a secret integer n_A . Chooses a secret integer n_B .		
Computes the point $Q_A = n_A P$. Computes the point $Q_B = n_B P$		
Public exchange of values		
Alice sends Q_A to Bob $\longrightarrow Q_A$		
$Q_B \leftarrow$ Bob sends Q_B to Alice		
Further private computations		
Alice Bob		
Computes the point $n_A Q_B$.	Computes the point $n_B Q_A$.	
The shared secret value is $n_A Q_B = n_A (n_B P) = n_B (n_A P) = n_B Q_A.$		

Table 6.5: Diffie–Hellman key exchange using elliptic curves

Public parameter creation		
A trusted party chooses a finite field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p ,		
and a point $G \in E(\mathbb{F}_p)$ of large prime order q .		
Samantha	Victor	
Key ci	reation	
Choose secret signing key		
1 < s < q - 1.		
Compute $V = sG \in E(\mathbb{F}_p)$.		
Publish the verification key V .		
Signing		
Choose document $d \mod q$.		
Choose random element $e \mod q$.		
Compute $eG \in E(\mathbb{F}_p)$ and then,		
$s_1=x(eG) mod q ext{ and }$		
$s_2 \equiv (d + ss_1)e^{-1} \pmod{q}.$		
Publish the signature (s_1, s_2) .		
Verification		
	Compute $v_1 \equiv ds_2^{-1} \pmod{q}$ and	
	$v_2 \equiv s_1 s_2^{-1} \pmod{q}.$	
	Compute $v_1G + v_2V \in E(\mathbb{F}_p)$ and ver-	
	ify that	
	$x(v_1G+v_2V) \bmod q = s_1.$	

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)

Public Parameter Creation		
A trusted party chooses and publishes a (large) prime p ,		
an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.		
Alice	Bob	
Key	Creation	
Chooses a secret multiplier n_A .		
Computes $Q_A = n_A P$.		
Publishes the public key Q_A .		
Enc	ryption	
	Chooses plaintext values m_1 and m_2	
	$modulo \ p.$	
	Chooses a random number k .	
	Computes $R = kP$.	
	Computes $S = kQ_A$ and writes it	
	$ \text{as} S=(x_S,y_S).$	
	Sets $c_1 \equiv x_S m_1 \pmod{p}$ and	
	$c_2 \equiv y_S m_2 \pmod{p}.$	
	Sends ciphertext (R, c_1, c_2) to Alice.	
Decryption		
Computes $T = n_A R$ and writes		
it as $T = (x_T, y_T)$.		
Sets $m'_1 \equiv x_T^{-1}c_1 \pmod{p}$ and		
$m_2' \equiv y_T^{-1} c_2 \pmod{p}.$		
Then $m'_1 = m_1$ and $m'_2 = m_2$.		

 $\begin{tabular}{|c|c|c|c|} \hline \textbf{Alice} & \textbf{Bob} \\ \hline \textbf{Key Creation} \\ \hline \textbf{Choose a large integer modulus } q. \\ \hline \textbf{Choose secret integers } f \mbox{ and } g \mbox{ with } f < \sqrt{q/2}, \\ \sqrt{q/4} < g < \sqrt{q/2}, \mbox{ and } \gcd(f, qg) = 1. \\ \hline \textbf{Compute } h \equiv f^{-1}g \mbox{ (mod } q). \\ \hline \textbf{Publish the public key } (q, h). \\ \hline \textbf{Encryption} \\ \hline \textbf{Choose plaintext } m \mbox{ with } m < \sqrt{q/4}. \\ \hline \textbf{Use Alice's public key } (q, h) \\ \hline \mbox{ to compute } e \equiv rh + m \mbox{ (mod } q). \\ \hline \textbf{Send ciphertext } e \mbox{ to Alice.} \\ \hline \ \textbf{Decryption} \\ \hline \hline \textbf{Compute } a \equiv fe \mbox{ (mod } q) \mbox{ with } 0 < a < q. \\ \hline \textbf{Compute } b \equiv f^{-1}a \mbox{ (mod } g) \mbox{ with } 0 < b < g. \\ \hline \textbf{Then } b \mbox{ is the plaintext } m. \\ \hline \end{tabular}$

Table 7 1. A	congruential	public key	cryptosystem
Table 1.1. A	congruentiai	public key	cryptosystem

Public parameter creation		
A trusted party chooses public parameters (N, p, q, d) with N and p		
prime, $gcd(p,q) = gcd(N,q) = 1$, and $q > (6d+1)p$.		
Alice	Bob	
Key ci	reation	
Choose private $\boldsymbol{f} \in \mathcal{T}(d+1,d)$		
that is invertible in R_q and R_p .		
Choose private $\boldsymbol{g} \in \mathcal{T}(d, d)$.		
Compute F_q , the inverse of f in		
R_q .		
Compute F_p , the inverse of f in		
R_p .		
Publish the public key $\boldsymbol{h} = \boldsymbol{F}_q \star \boldsymbol{g}$.		
Encryption		
	Choose plaintext $\boldsymbol{m} \in R_p$.	
	Choose a random $\boldsymbol{r} \in \mathcal{T}(d, d)$.	
	Use Alice's public key \boldsymbol{h} to	
	compute $\boldsymbol{e} \equiv p\boldsymbol{r}\star\boldsymbol{h} + \boldsymbol{m} \pmod{q}$.	
	Send ciphertext e to Alice.	
Decryption		
Compute		
$f \star \boldsymbol{e} \equiv p\boldsymbol{g} \star \boldsymbol{r} + \boldsymbol{f} \star \boldsymbol{m} \pmod{q}.$		
Center-lift to $\boldsymbol{a} \in R$ and compute		
$\boldsymbol{m} \equiv \boldsymbol{F}_n \star \boldsymbol{a} \pmod{p}.$		

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem

Table 6.13: Menezes–Vanstone variant of Elgamal (Exercises 6.17, 6.18)