Comment (2024): in 2019, four-function calculators were permitted on the exam, so slightly more complicated arithmetic was involved and no modular arithmetic reference tables are provided. This year, calculators will not be permitted; instead reference tables like those on the 2020 exam will be provided.

- 1. (a) [5 points] Find integers u and v such that 101u + 80v = 1. Clearly show the process you have used to compute them.
 - (b) [2 points] Determine 80^{-1} (mod 101).
 - (c) [5 points] Solve the following pair of congruences. Your answer should be a single congruence that describes *all* possible solutions.

$$n \equiv 2 \pmod{80}$$

$$n \equiv 7 \pmod{101}$$

2. [7 points] Alice and Bob are performing Diffie-Hellman key exchange (see back page for the textbook's reference table) with parameters

$$p = 103, g = 5.$$

For her secret number a, Alice chooses

$$a = 33.$$

Determine Alice's public number A. Clearly show the process you use to compute it; for full points you should use a process that would scale well to larger primes.

3. [7 points] Alice and Bob are using ElGamal encryption (see back page for the textbook's reference table), with the following public parameters.

$$p = 31, \ g = 3.$$

Alice publishes the following public key.

$$A = 22$$

Use the Babystep-Giantstep Algorithm (Shanks's algorithm) to determine Alice's private key a. Clearly show all steps, including the two lists that you use to check for a collision.

- 4. Let p be a prime number, and g an element of $(\mathbb{Z}/p\mathbb{Z})^*$.
 - (a) [3 points] Define what it means for g to be a primitive root modulo p.
 - (b) [3 points] Prove that if g is a primitive root modulo 29, then $g^8 \pmod{p}$ has order 7.
 - (c) [3 points] Prove that if g is a primitive root modulo 29, then g^3 is also a primitive root modulo 29.

Reference tables from textbook:

Public parameter creation	
A trusted party chooses and publishes a (large) prime p	
and an integer g having large prime order in \mathbb{F}_p^* .	
Private computations	
Alice	Bob
Choose a secret integer a.	Choose a secret integer b .
Compute $A \equiv g^a \pmod{p}$.	Compute $B \equiv g^b \pmod{p}$.
Public exchange of values	
Alice sends A to Bob \longrightarrow A	
$B \leftarrow$ Bob sends B to Alice	
Further private computations	
Alice	Bob
Compute the number $B^a \pmod{p}$.	Compute the number $A^b \pmod{p}$.
The shared secret value is $B^a \equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}$.	

Table 2.2: Diffie–Hellman key exchange

Dublis assessment as security	
Public parameter creation	
A trusted party chooses and publishes a large prime p	
and an element g modulo p of large (prime) order.	
Alice	Bob
Key creation	
Choose private key $1 \le a \le p-1$.	
Compute $A = g^a \pmod{p}$.	
Publish the public key A .	
Encryption	
	Choose plaintext m .
	Choose random element k .
	Use Alice's public key A
	to compute $c_1 = g^k \pmod{p}$
	and $c_2 = mA^k \pmod{p}$.
	Send ciphertext (c_1, c_2) to Alice.
Decryption	
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.	
This quantity is equal to m .	

Table 2.3: Elgamal key creation, encryption, and decryption