1. [7 points] Note (2024): our Midterm 2 will not cover Elliptic curves, so you may skip this question (but may want to come back to it to review for the final exam). Consider the elliptic curve over \mathbb{F}_{11} defined by the following congruence.

$$Y^2 \equiv X^3 + 7X + 9 \pmod{11}$$

The point P = (2,3) lies on this curve (you do not need to check this). Compute $P \oplus P \oplus P$ on this curve.

2. [7 points] You are using DSA with the following parameters (see the DSA summary at the back of the exam packet for notation).

$$p = 23 \qquad \qquad q = 11 \qquad \qquad g = 2$$

Your private key is a = 3. You wish to sign the document d = 4, and choose the random (ephemeral) element k = 8. Compute the signature (S_1, S_2) .

3. [7 points] Eve has recently succeeded in writing an efficient factoring algorithm, and has decided to use it for nefarious purposes. Her algorithm is written in a function factor(N), which takes an integer $N \ge 2$ as input and returns some prime factor of N.

Write a function breakRSA(N, e, c) that takes Bob's public numbers N and e and a ciphertext c sent to Bob by Alice, and returns Alice's plaintext m (notation as in the summary table at the back of the exam packet). Your function may use Eve's new factor function, as well as any built-in functions in Python (such as pow(a,b,m), which efficiently computes $a^b \pmod{m}$). You should write the code for any other helper functions you use that are not built in to Python.

4. [7 points] Note (2024): our Midterm 2 will not cover Elliptic curves, so you may skip this question (but may want to come back to it to review for the final exam). Samantha and Victor agree to the following digital signature scheme. The public parameters and key creation are identical to ECDSA (see the table at the back of the exam packet for details and notation). The verification process is different. As in ECDSA, Victor begins by computing the following two numbers.

$$v_1 = ds_2^{-1} \pmod{q}$$

 $v_2 = s_1 s_2^{-1} \pmod{q}$

Victor considers a signature (s_1, s_2) valid if and only if the following verification equation holds.

$$x(v_1V \ominus v_2G) \mod q = s_1$$

Determine a signing procedure that Samantha can follow to sign a chosen document d for this system.

Reference tables from textbook:

Public parameter creation			
A trusted party chooses and publishes a (large) prime p			
and an integer g having large prime order in \mathbb{F}_p^* .			
Private computations			
Alice Bob			
Choose a secret integer a. Choose a secret integer b.			
Compute $A \equiv g^a \pmod{p}$. Compute $B \equiv g^b \pmod{p}$.			
Public exchange of values			
Alice sends A to Bob $\longrightarrow A$			
$B \leftarrow$ Bob sends B to Alice			
Further private computations			
Alice Bob			
Compute the number $B^a \pmod{p}$. Compute the number $A^b \pmod{p}$			
The shared secret value is $B^a \equiv (g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}$.			

Table 2.2: Diffie–Hellman key exchange

Bob	Alice		
Key creation			
Choose secret primes p and q .			
Choose encryption exponent e			
with $gcd(e, (p-1)(q-1)) = 1$.			
Publish $N = pq$ and e .			
Encryption			
	Choose plaintext m .		
	Use Bob's public key (N, e)		
	to compute $c \equiv m^e \pmod{N}$.		
	Send ciphertext c to Bob.		
Decryption			
Compute d satisfying			
$ed \equiv 1 \pmod{(p-1)(q-1)}.$			
Compute $m' \equiv c^d \pmod{N}$.			
Then m' equals the plaintext m .			

Table 3.1: RSA key creation, encryption, and decryption

Public parameter creation		
A trusted party chooses and publishes a large prime p		
and an element g modulo p of large (prime) order.		
Alice Bob		
Key creation		
Choose private key $1 \le a \le p-1$.		
Compute $A = g^a \pmod{p}$.		
Publish the public key A .		
Encryption		
	Choose plaintext m .	
	Choose random element k .	
	Use Alice's public key A	
	to compute $c_1 = g^k \pmod{p}$	
	and $c_2 = mA^k \pmod{p}$.	
	Send ciphertext (c_1, c_2) to Alice.	
Decryption		
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.		
This quantity is equal to m .		

Table 2.3: Elgamal key creation, encryption, and decryption

Samantha	Victor		
Key creation			
Choose secret primes p and q .			
Choose verification exponent e			
with			
gcd(e, (p-1)(q-1)) = 1.			
Publish $N = pq$ and e .			
Signing			
Compute d satisfying			
$de \equiv 1 \pmod{(p-1)(q-1)}.$			
Sign document D by computing			
$S \equiv D^d \pmod{N}.$			
Verification			
	Compute $S^e \mod N$ and verify		
	that it is equal to D .		

Public parameter creation			
A trusted party chooses and publishes a large prime p			
and primitive root g modulo p .			
Samantha Victor			
Key creation			
Choose secret signing key			
$1 \le a \le p - 1.$			
Compute $A = g^a \pmod{p}$.			
Publish the verification key A .			
Signing			
Choose document $D \mod p$.			
Choose random element $1 < k < p$			
satisfying $gcd(k, p-1) = 1$.			
Compute signature			
$S_1 \equiv g^k \pmod{p}$ and			
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}$.			
Verification			
	Compute $A^{S_1}S_1^{S_2} \mod p$.		
	Verify that it is equal to $q^D \mod p$.		

Table 4.2: The Elgamal digital signature algorithm

Table 4.1: RSA digital signatures

Public parameter creation			
A trusted party chooses and publishes large primes p and q satisfying			
$p \equiv 1 \pmod{q}$ and an element g of order q modulo p.			
Samantha Victor			
Key creation			
Choose secret signing key			
$1 \le a \le q - 1.$			
Compute $A = g^a \pmod{p}$.			
Publish the verification key A .			
Signing			
Choose document $D \mod q$.			
Choose random element $1 < k < q$.			
Compute signature			
$S_1 \equiv (g^k \mod p) \mod q$ and			
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$			
Verification			
	Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and		
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}.$		
	Verify that		
	$(g^{V_1}A^{V_2} \mod p) \mod q = S_1.$		

Table 4.3: The digital signature algorithm (DSA)

Public parameter creation		
A trusted party chooses and publishes a (large) prime p ,		
an elliptic curve E over \mathbb{F}_p , and a point P in $E(\mathbb{F}_p)$.		
Private computations		
Alice	Bob	
Chooses a secret integer n_A . Chooses a secret integer n_B .		
Computes the point $Q_A = n_A P$. Computes the point $Q_B = n_B$		
Public exchange of values		
Alice sends Q_A to Bob $\longrightarrow Q_A$		
$Q_B \leftarrow$ Bob sends Q_B to Alice		
Further private computations		
Alice	Bob	
Computes the point $n_A Q_B$.	Computes the point $n_B Q_A$.	
The shared secret value is $n_A Q_B = n_A (n_B P) = n_B (n_A P) = n_B Q_A$.		

Table	6.5:	Diffie-Hellmar	ı kev	exchange	using	elliptic c	urves
Table	0.0.	Dune neuma	I ROJ	enemange	uomp	cimpule e	ur voo

Public parameter creation			
A trusted party chooses a finite field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p ,			
and a point $G \in E(\mathbb{F}_p)$ of large prime order q .			
Samantha Victor			
Key creation			
Choose secret signing key			
1 < s < q - 1.			
Compute $V = sG \in E(\mathbb{F}_p)$.			
Publish the verification key V .			
Signing			
Choose document $d \mod q$.			
Choose random element $e \mod q$.			
Compute $eG \in E(\mathbb{F}_p)$ and then,			
$s_1 = x(eG) \mod q$ and			
$s_2 \equiv (d + ss_1)e^{-1} \pmod{q}.$			
Publish the signature (s_1, s_2) .			
Verification			
	Compute $v_1 \equiv ds_2^{-1} \pmod{q}$ and		
	$v_2 \equiv s_1 s_2^{-1} \pmod{q}.$		
	Compute $v_1 \bar{G} + v_2 V \in E(\mathbb{F}_p)$ and ver-		
	ify that		
	$x(v_1G+v_2V) \bmod q = s_1.$		

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)