Note The due date for this assignment is Friday $12/6$, so that it will not be due too soon after the midterm and break. However, the last problem set will be due soon after, on Wednesday 12/11 (the last day of class). It will be posted by Wednesday 12/4. So I would recommend doing as much of this one as possible by Wednesday to leave time to move on to the next.

Written problems:

1. This problem explores the reasons why the primes p and q is DSA can be chosen to have somewhat different sizes.

Suppose that p, q, g are DSA public parameters (i.e. p, q are primes, and q has order q modulo p), and $A \equiv g^a \pmod{p}$ is Samantha's public (verification) key, while a is her private (signing) key. As we discussed in class, there are two main sorts of algorithms that Eve might use to extract a from A: collision algorithms (whose runtime depends on q), and the number field sieve (whose runtime depends on p). For simplicity, assume that Eve has a collision algorithm that can extract a in \sqrt{q} steps, and an implementation of the number field sieve (a state of the art DLP algorithm; you do not need to know any details about it, but the textbook has a good overview) that can extract a in $e^{2(\ln p)^{1/3}(\ln \ln p)^{2/3}}$ steps (the true runtimes would involve a constant factor that would depend on implementation, and various other factors depending on the cost of arithmetic modulo p and of finding collisions).

- (a) Suppose that Samantha is confident that her private key will be safe as long as Eve does not have time to perform more than 2^{64} steps in either algorithm. How many bits long should she choose p to be? How many bits long should q be?
- (b) What if she instead wants to be safe as long as Eve doesn't have time for 2^{128} steps?
- (c) The NSA's recommendation for "Top Secret" government communications is to use 3072 bit values of p , and 384 bit values of q . How does this compare to your answers above? If the difference is significant, what might explain the discrepancy?

For parts (a) and (b), it is sufficient to write a short script to find the minimum safe numbers of bits by trial and error (there are more efficient ways, of course).

- 2. Textbook exercise 6.1 (Elliptic curve arithmetic over \mathbb{R})
- 3. Textbook exercise 6.5, parts (a) and (b) (Listing the points of an EC over $\mathbb{Z}/p\mathbb{Z}$)

Hint. You can save some time by making two lists in advance: values of y^2 for various y and values of $x^3 + Ax + B$ for various values of x, then checking for numbers occurring in both lists)

4. Textbook exercise 6.6(a) (addition table for an elliptic curve over $\mathbb{Z}/5\mathbb{Z}$)

Programming problems:

1. Write a function $ecAdd(P,Q,A,B,p)$ to compute the sum $P \oplus Q$ of two points on the Elliptic Curve over $\mathbb{Z}/p\mathbb{Z}$ defined by $Y^2 \equiv X^3 + AX + B \pmod{p}$. You may assume that P and Q are both valid points on the curve^{[1](#page-0-0)}. The points P and Q will be either pairs (x, y) of elements of $\mathbb{Z}/p\mathbb{Z}$, or the integer 0 (as a stand-in for the point $\mathcal O$ at infinity), and the function should return the result in the same format.

¹Though of course if you were using this code in real life, you should add some error handling that checks this.

2. Write a function $ecl(1, P, A, B, p)$ that computes an integer multiple $n \cdot P$ of a point P on an elliptic curve $Y^2 \equiv X^3 + AX + B \pmod{p}$. Points will be formatted (x, y) , with $0 \leq x, y < p$, while the point at infinity should be denoted simply as 0. Your code will need to be able to scale to very large values of n ; I suggest adapting the fast-powering algorithm from modular arithmetic to elliptic curves.