
Problem Set 2 Math 252, Spring 2024

Written problems:

1. This problem is meant to give you a taste of some experimental number theory, and to practice
using some code you’ve written to do experiments.

(a) Given a positive integer B, suppose that you choose two numbers a, b at random among
all integers exactly B bits long (that is, 2B−1 ≤ a, b < 2B). Then one could find the
probability that this pair of numbers satisfies gcd(a, b) = 1 (the two numbers are said
to be “coprime” if so). Do you think this probability gets larger or smaller as B grows,
and why? There is no right or wrong answer here; just think about it and write what
comes to mind. Good-faith effort will receive full points.

(b) (Solve programming problem 1 before doing this part) using your code for numCoprimePairs,
compute this probability, as a decimal to at least four places, for each value of B from 4
to 15 (you can get this probability by dividing the number of coprime pairs you find by
the total number of pairs). Note that this will involve calling your code on input larger
than the test bank, so you should expect it to take more than a second, but it shouldn’t
take more than a few minutes. Describe the trend that you see.

2. Textbook exercise 1.10, parts (a) and (b) (use a calculator/computer for the arithmetic, but
show the steps). (Extended Euclidean algorithm examples)

3. Textbook exercise 1.15 (congruence is “compatible with” addition and multiplication).

4. Prove the following basic facts about congruence, asserted in class.

(a) For any integer a ∈ Z and positive integer m, a ≡ (a%m) (mod m).

(b) With a,m as above, the number a%m is the unique element of {0, 1, · · · ,m− 1} that is
congruent to a modulo m (that is, no other element of this set is congruent to a modulo
m).

(c) For any two integers a, b ∈ Z and any positive integer m, a ≡ b (mod m) if and only if
a%m = b%m.

5. Textbook exercise 1.16, parts (a), (b), and (c). (Multiplication tables in modular arithmetic;
we did one of these in class but it is a useful exercise to write it out again)

Programming problems:

1. Write a function numCoprimePairs(A,B) that receives two positive integers A,B with A ≤ B,
and returns the number of pairs of integers (m,n) such that both m and n are chosen from the
set {A,A+ 1, · · · , B} and gcd(m,n) = 1. All test cases will satisfy B ≤ 210. (This function
will be used in one of the written problems above.)

Note Here and in future assignments, feel free to use Python’s built-in gcd function.
To do so, add the line from math import gcd to the top of your source file.

2. Write a function bezout(a,b) that takes two positive integers a, b and returns three integers
g, u, v, where g = gcd(a, b) and au + bv = g. The numbers in the test bank will range
up to 256 bits in size, but there will also be smaller case that can be solved by a naive
approach. I recommend that you implement the extended Euclidean algorithm (either the
way we discussed in class, or following one of the methods in the text), but other methods
may also work.

due Friday 9/20 by 10pm. page 1 of 2



Problem Set 2 Math 252, Spring 2024

3. Write a function disclog(g,h,p) that solves the following problem: given a prime p and
two elements g, h ∈ Z/pZ, find an integer x such that gx ≡ h (mod p). Multiple answers
will be possible; your code may return any of them. You may assume in all test cases that
a solution exists. Your code will earn full points if it is able to solve this problem for primes
p up to 20 bits in size in 1 second or less. However, to allow you to see exactly where the
naive approach becomes too slow (or, if you’re up for it, to allow you to try to implement
better methods), the test bank will include cases where p ranges up to 40 bits, but you will
receive full credit as long as your code solves the test cases up to 20-bit primes.
A trial-and-error approach will suffice to solve cases up to 20 bits, but you will need to find
an approach that keeps arithmetic to a minimum.

Note Later, we’ll discuss an algorithm that can solve the entire test bank. This
problem is called the discrete logarithm problem, and there is substantial research
aiming to solve it as efficiently as possible. It is believed to be impossible to solve it
pratically for cryptographically large integers.

due Friday 9/20 by 10pm. page 2 of 2


