
Problem Set 6 Math 252, Spring 2024

Written problems:

1. Let f, g, h be postitive-valued functions, and assume that h(x) ≥ 1 for all x. Prove that if
f(x) = O(h(x)) and g(x) = O(1), then f(x) + g(x) = O(h(x)) and f(x)g(x) = O (h(x)).

2. For any positive integer n, denote by B(n) the number of bits of n. In other words, B(n) is
the unique integer such that

2B(n)−1 ≤ n < 2B(n).

(a) Let f(n) be a function from positive integers to positive real numbers. Prove that
f(n) = O(n) if and only if f(n) = O

(
2B(n)

)
.

(b) Prove that f(n) = O(
√
n) if and only if f(n) = O

(√
2
B(n)

)
.

(c) Let d be a positive integer. Prove that f(n) = O((log n)d) if and only if f(n) =
O
(
B(n)d

)
.

3. This problem considers a slighlty more general form of babystep-giantstep, in which the
babystep list and giantstep list need not have the same length. Let p be a prime number, and
let g, h be two units modulo p. Suppose that two positive integers M,N are chosen, and we
construct two lists as follows.

• The babystep list consists of gi mod p for i = 0, 1, · · · ,M − 1.

• The giantstep list consists of hg−Mj mod p for j = 0, 1, · · · , N − 1.

(a) Prove that there is a collision between these two lists if and only if there exists a solution
x to the discrete logarithm problem gx ≡ h (mod p) with 0 ≤ x < MN .

(b) Under what circumstances will there be multiple collisions between the two lists?

(c) Suppose that M,N are chosen such that MN ≥ ordp(g), and further suppose that the
lists do not collide. Prove that the discrete logarithm problem gx ≡ h (mod p) has no
solution.

4. Solve each system of congruences. Your answer should take the form of a single congruence
of the form x ≡ c (mod m) describing all solutions to the system.

(a) x ≡ 1 (mod 3)
x ≡ 2 (mod 5)

(b) x ≡ 6 (mod 11)
x ≡ 2 (mod 10)

(c) x ≡ 2 (mod 3)
x ≡ 1 (mod 10)
x ≡ 3 (mod 7)

(d) x ≡ 6 (mod 8)
x ≡ 3 (mod 9)
x ≡ 0 (mod 17)

due Wednesday 10/23 at 10pm. page 1 of 2

Problem Set 6 Math 252, Spring 2024

Programming problems:

1. (This will be an ingredient in the Pohlig-Hellman algorithm, to be discussed soon) Write a
function ppFactor(N) which accepts an integer N ≥ 2, and returns a list of the prime powers
(all powers of different primes) factoring N , in any order. For example, if N = 12 the function
should return either [4,3] or [3,4]. The integer N may be quite large (up to 1024 bits),
but you may assume that all of the prime-power factors are 16 bits or smaller.

Suggested approach: There are many ways to do this, and certainly many more efficient than
what I’m about to describe, but here is one relatively quick-to-implement approach. Write a
for loop to iterate through all numbers p from 2 to 216. For each number, check whether it
divides N . If so, divide N by p repeatedly until it is no longer divisible by p (and replace N
by the new value), then add the appropriate power of p to the list you will eventually return.
As long as you shrink N as you go, you will never find that p | N unless p is in fact prime,
since any smaller factor would have already been found to divide N .

2. Write a function crtList(ls) that takes a list ls of pairs (ai,mi) of integers, with any two of
the values mi relatively prime, and returns a pair (a,m) such that the system of congruences
x ≡ ai (mod mi) is equivalent the single congruence x ≡ a (mod m), and 0 ≤ a < m (i.e. a
is reduced modulo m).

For example, crtList([(2,3), (3,5), (0,2)]) should return (8, 30), since the system
of three congruences x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 0 (mod 2) is equivalent to the single
congruence x ≡ 8 (mod 30).

The integer a should be reduced modulo m, i.e. 0 ≤ a < m. The moduli mi will be integers
up to 256 bits in length, and the list will contain up to 128 entries.

due Wednesday 10/23 at 10pm. page 2 of 2

