
Problem Set 7 Math 252, Fall 2024

Written problems:

1. Evaluate the discrete logarithm log40 33 in Z/73Z using the Pohlig-Hellman algorithm, ac-
cording to the following steps (see the statement of Theorem 2.31 in the textbook for details
on the notation). You may use, without proof, the fact that 40 is a primitive root modulo 73.

(a) Let N be the order of 40 (mod 73). Factor N into prime powers as N = qe11 · · · qett .

(b) Determine the numbers gi and hi for each i from 1 to t inclusive. For each i, what is the
order of gi modulo 73?

(c) For each i, evaluate the discrete logarithm yi = loggi hi in Z/73Z, using a method of
your choice.

(d) Solve the system of congruences x ≡ yi (mod qeii ) to obtain the discrete logarithm
x = log40 33.

2. Suppose that p is a large prime (e.g. 1024 bits), g is a primitive root modulo p, and Alice
has an Elgamal public key A corresponding to a private key a (that is, A ≡ ga (mod p), and
Alice knows the number a). Bob does not believe that Alice actually knows the private key
a corresponding to A, so she asks her to solve the following challenge to prove it. Bob will
give Alice a positive integer d of his choosing. Alice must return (in a reasonable amount of
time) two integers b, c such that

gb · bc ≡ Ad (mod p).

If she succeeds, Bob will be convinved that Alice really does know her private key.

(a) Describe a procedure that Alice can use to solve Bob’s challenge efficiently.
Hint. Choose an integer e at random, and choose b to be ge (mod p). Then find a choice
of c.

(b) Explain briefly why Bob should be convinced that Eve (or anyone else who doesn’t know
the private key) would not be able to carry out the procedure you describe in part (a).

Note. This exercise prefigures the basic idea behind Elgamal “digital signatures,” which we
will discuss soon. You can solve this problem without knowing anything about signatures,
however.

3. This problem considers a slightly more general form of a fact proved in the course of develoepd
the Pohlig-Hellman algorithm. You may want to refer to your notes from that discussion for
ideas on how to proceed.

(a) Suppose that a, x, y,m are integers such that a | m. Prove that ax ≡ ay (mod m) if and
only if x ≡ y (mod m

a ).

(b) Suppose that p is a prime number, g, h are units modulo p, and x is a solution to the
discrete logarithm problem gx ≡ h (mod p). Let n = ordp(g) and let q be an integer
such that q | n. Prove that for any integer y, the congruence

(gn/q)y ≡ hn/q (mod p)

holds if and only if x ≡ y (mod q).

(c) Briefly explain how the fact above was involved in our discussion of the Pohlig-Hellman
algorithm.

due Wednesday 10/30 by 10pm. page 1 of 3



Problem Set 7 Math 252, Fall 2024

4. In this problem, you will empirically investigate a famous theorem called the Prime Number
Theorem, and some of its variations. We will discuss this theorem, these variations, and their
relevance to cryptography soon.

(a) Using any method you wish, determine the number of primes exactly n bits long for
each of the following values of n: 4, 8, 12, 16, 20. (Note: a quick way to do this without
writing any code is to use Wolfram Alpha; it can correctly answer questions of the form
“number of primes between a and b”. You can also use your Miller-Rabin code (one of
this week’s coding problems), or implement the Sieve of Eratosthenes, or use any other
method you can think of to count primes).

(b) The simplest of of the Prime Number Theorem says that the number of primes less than
or equal to n is approximately n

ln(n) . Use this approximation to give a formula estimating

the number of primes in a closed interval [a, b] (where a, b ∈ Z), and determine the
number of exactly n-bit primes this predicts for the five values of n in part (a).

(c) Another version of the Prime Number Theorem says that the number of primes in a
closed interval [a, b] is approximated by the sum

b∑
m=a

1

ln(m)
.

(Informally, you can pretend that “the probability that m is prime is 1
ln(m) .” This is

nonsense if taken literally, but it is a useful fiction: the sum above would then be the
expected value of the number of primes between a and b inclusive, since it the sum, for
each m in that interval, of the probability that m is prime.)

Compute the number of exactly n-bit primes predicted by this estimate for the same five
values of n. (You can compute this however you like; it can, for example, be done with
a few lines of Python code, or using Wolfram Alpha. State in your write-up exactly how
you computed it.)

(d) Summarize the numbers you found in parts (a) through (c) in a table. Discuss the
relative accuracy of the two different estimates in parts (b) and (c).

Note If you’re interested (not part of the course), you can try to prove that the
two estimates, despite looking different, are the same asymptotically (that is, the
limit of their ratios converges to 1 as b → ∞). This can be done by approximating
the sum with an integral, applying integration by parts, and finding some bounds
on the result.

(e) Modify the approximation methods from parts (b) and (c) to instead approximate the
number of primes p ≡ 1 (mod 5) of each of the five bit lengths, and compute the exact
number of such primes (Wolfram Alpha can do this as well; ask me if you’re having
trouble getting it to understand the question). Construct a table like in part (c) to
compare the true value and the two estimates. Briefly discuss any observations you can
make from this table.

5. (Solve the Miller-Rabin programming problem first, so that you have code that you can use to
count Miller-Rabin witnesses) For each integer n between 1,000,000 and 1,000,009 inclusive,
determine the proportion of the numbers from 1 to n − 1 inclusive that are Miller-Rabin

due Wednesday 10/30 by 10pm. page 2 of 3



Problem Set 7 Math 252, Fall 2024

witnesses. Which of these numbers are prime? (The figures you obtain should convince you
that the 75% figure from Rabin’s theorem is rather conservative, and explains why most
people are not worried about using only a few Miller-Rabin trials to test primality).

Programming problems:

1. Implement the Pohlig-Hellman algorithm. That is, write a funciton ph(g,h,p) that solves
the discrete logarithm problem gx ≡ h (mod p) under the assumption that p is a “weak”
prime, in the sense that p − 1 factors into small prime factors. More specifically: you may
assume that p − 1 factors into prime powers, all 16 bits or smaller, but p will be 64 bits in
length.

2. Implement the Miller-Rabin primality test (or another primality test of your choice): write
a function isPrime(n) that returns True or False according to whether or not n is prime.
The starter code will also define a function checkList that applies your function to a list
of integers; you do not need to modify that part. Each test case will give your function ten
integers of the same size; to pass the test case your function must give the correct answer for
all ten.

due Wednesday 10/30 by 10pm. page 3 of 3


