
Math 272 Midterm 1

1. [9 points] Solve the following system of linear equations.

x2 + x3 + x4 = 5
x1 + 3x3 + 7x4 = 14
x1 + 2x3 + 5x4 = 11

2. [9 points] Recall that two matrices A,B commute if AB = BA. Consider the following three
matrices.

A =

(
−1 0
0 1

)
B =

(
0 −1
1 0

)
C =

(
3 −4
4 3

)
(a) Determine whether A and B commute.

(b) Determine whether B and C commute.

(c) Determine whether A and C commute.

3. [9 points] (a) Suppose that A is an n × n matrix. Show that if A is invertible, then A~x = ~0
has no nontrivial solutions ~x.

(b) Using part (a), show that A =

 1 1 −2
2 −3 1
−1 −1 2

 is not an invertible matrix. (Hint: the

numbers in each row sum to 0.)

4. [9 points] The augmented matrix of a linear system has the form 1 2 −1 a
2 3 −2 b
−1 −1 1 c

 .

(a) Determine the values of a, b, c for which this linear system in consistent.

(b) For those values of a, b, c for which the system is consistent, does it have a unique solution
or infinitely many solutions? Briefly explain why.

5. [9 points] Write a system of linear equations that describes the traffic flow pattern for the
network in the figure. You do not need to solve the system.
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6. [9 points] Consider the following three vectors.

~v1 =

1
1
1

 ~v2 =

1
2
3

 ~v3 =

1
1
2


(a) Show that ~v1, ~v2, ~v3 are linearly independent.
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(b) Find the unique scalars c1, c2, c3 such that the vector

~v =

2
1
3


is equal to c1~v1 + c2~v2 + c3~v3.


