Textbook problems from DeFranza and Gagliardi:

- §4.5: 10, 12
- §5.1: $8,16,18,24,30$
- §5.2: 20, 34
- $\S 5.4: 2,4$ (feel free to use software for particularly onerous computations)

Supplemental problems:

Feel free to use software for the more onerous computations in the following problems.

1. Let T be the transition matrix from problem 5.4.4, i.e.

$$
T=\left(\begin{array}{ccc}
0.6 & 0.3 & 0.4 \\
0.1 & 0.4 & 0.3 \\
0.3 & 0.3 & 0.3
\end{array}\right) .
$$

(a) Diagonalize the matrix T.
(b) Find an explicit formula for T^{n} (in the form shown in class). Use your formula to check your answers to part (b) of 5.4.4.
(c) Determine $\lim _{n \rightarrow \infty} T^{n}$, as a matrix.
2. This problem has been removed; the original Supplement problem \#2 (on Fibonacci numbers) will instead be covered in the lab on $4 / 24$.
3. Define a sequence (similar to the Fibonacci numbers, but slightly different) $G_{0}, G_{1}, G_{2}, \ldots$ as follows: $G_{0}=0, G_{1}=1$, and $G_{n}=G_{n-1}+2 G_{n-2}$ for all $n \geq 2$. The sequence begins $0,1,1,3,5,11,21, \cdots$. Following the same method was used to find a formula for the Fibonacci numbers in the lab, find an explicit formula for the number G_{n} in terms of n. (Note: this eigenvalues involved will be integers, unlike when working with Fibonacci numbers; the computations in this problem are much easier to do by hand).
(Same "important notes" and "submission instructions" apply as before; omitted to save space.)

