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e Keep cell phones off and out of sight.
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1. Consider a linear transformation T : R? — R? that has the following effect on the unit square.

(2)7
H ENEEE

(a) [2 points] Find the matrix representation of T in the standard basis.

(There are two possible answers based on how you interpret the picture. You need only
give one.)

’T(E.] & T(&) an (3) & ("z‘.) i som;mA+

S,
(Is=(32) o (3 3)

(eithramswer sufhico).

(b) [2 points] Determine R(T) and N(T) (no explanation is necessary for this part).

R(T = R
g NIT) = {5)

sinee. T in jnverdible.

(continued on reverse)
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(c) [3 points| Find the matrix represen

Final Exam

tation, in the standard basis, of the inverse transfor.

mation 7L
2 _|)—\ _ \ 2 \
(‘-l 2) T 6+H (—H 3
A (z
- D(-‘l 3)
OR I 2 S Y P I
— (z q) I B ) (—7. -\
(oHﬁM_
cins. 10 - _|__ -4 3
(a)) o 0 ( .

(d) [3 points] Determine a point ¥ &

5))_

T(E) = (10

150) by this transformation (i.e.

R? that is sent to (

= 5 G 3)(R) o Gese)
= (7‘-)
oR ~ _ -
(wl othwr T-‘(?o)‘: T:S'(: ?\’) (To)
Ot\;\})ohn ) é
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2. Let A be the following 3 x 5 matrix.

A= -6 6| —8 4
3 -3 -4 10

The reduced row echelon form of A is as follows (you do not need to verify this yourself).

(a) [3 points] Give a basis for N(A).

XEN(N) (=> Xy = 3X:_+KH

X3 = -¥gy (%2 Xy freel
Xs =0
(= Y = 3 -0
=OXT K[ D Xy | e
o |
O

(b) [3 points] Give a basis for R(A).

Pivoks o coh. 1,3.5 of RREF
=) ¢oh. 3.6 ufonya'nd span R(A)

(A -1 -8
(2\) (:36)’ -;') » o boan

fo RIN).

(continued on reverse)
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(c) [3 points] Let A be the same matrix above, and let b be any vector in_'lﬁ'.s. Explain why
the matrix equation A¥ = b is consistent, regardless of the choice of &. How many free
variables occur in the general solution of A¥ = b7

Sinte dimRIN =3 =dim B, infad
R(N) = R*
Hene VBelR® b €RIA),
e 3R b Ax=b

ie. AS{:J; s consiitent

Anq fwo sol'm diffa by an elt of NIAL,
je. a LC of the boay vecton v pm{-(a),

Thew an fwo such veekm. heneetwo Free vam‘aﬂf;

in e gl ol o A (egandlmof B ),
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2 -2 -3
A=1(1 1 2 ].
3 0 1

Solving AX =T by nowneduchim:

3. [9 points] Let

Determine the inverse matrix A1,

- - \ o (6)
2’-:. 7'—1_ }‘4 B0
1 \ Y 4 O i O
1, 0, -lb o 0 4 \
Rl-=2R
3 -=3RT
AR R
N
| O
ol Lo g S twe
0o -4 -3 | -2 0
6 -3  -g s} -3 |
+3 r ¥ l -t I
33U
Ri+= ;':‘Rz.
°3 -= 3R2
RZ ¥= (1)
{ O Yy Y \e O
=1 iy ¥3]2 -1
© | E 2T G +\
-3 +20)d vy 9?_
(o2 O Vi -3y -1)2 \
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RI-=K3

R7-= FR3

3 ¥=4
| o} o \ 2 -1\
o) \ ») S I -3
0 o} { -7 -6 H
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4. Suppose that T : V — W is a linear transformation of vector spaces, and S = {#, U2, U3} is a
set of three vectors in V.

(a) [5 points] Suppose {T'(¥1), T(¥2), T(¥3)} is a linearly independent set in W. Prove that
S is a linearly independent set in V.

We it thow thak no nontadiah Le of {G).Vz,?/;] a 0.
Suppose thed
eV, + CaVe + Gy = 0. (well show ¢=¢=6=0).
Then sinee T o liacor, i+ pona Hrowgh Ley & stnds Dh 5:
T (C¥# Gl +GV,) = T(3)
= o TW)+ aTWR)+ 6 T(%)=0 .

Since  § TAR), TR, TIRY} v LT, tho LC muak
he 'l"nMa[, ie.

G =C1=C‘5=D)

cn olepiced.

(continued on reverse)
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(b) [5 points] Prove that if S is a linearly independent set in V' and T is one-to-one, then
{T(%1), T(¥2), T(¥3)} is a linearly independent set in W.

Suppose that
CT(R)+ e TN « T@) = 8. (well thow this be
(1 Potvicd e .
Ci=l=(:%0),

As i (&), we way newpitke +his os

T (T + GV +GW%) = T(B).

Siaw T o one-tp-one  equal outpuh imply equaf
MPL({‘L. & hente

C\V\ + C‘LV‘L + Cg-\?; = 6

Now sinte  §% Vo, Va} & LT | Fais LC o avid, ie.

CG=C=G=0

/

o0 d,wi?{d.
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5. [9 points] Denote by &, 7, b the following three vectors in R,

0 1 0
7= -1 7= 1 I= -11

2 -1 —11

0 -1 11

Determine the linear combination w of {4, v} that is closest to b (that is, the linear combination
that minimizes || — b])).

By the ninmad egn,

all+bv  » cloab o

b
= ul. (au+b"'—:) &
v L (afi+bv-b)

7 TV G i-b
(=) = (. .g
T A YA Y
o/ s -n
-\-7 L3t 2%«

; e -H)
=" b S =

—_—

£ 1lv,
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6. Let V be an inner product space. Suppose that W is a subspace of V' with basis B
{TE],TEQ,TE:;}.

(a) [2 points] What is the dimension of W?

AW =3 (abaw 8 har 3 elemunh)

(b) [4 points] Suppose that & is a vector in V, and @ is a vector in W such that
wy L (b— i), Wy L (b—w), and w3l (b— 7).

Prove that b — @ is, orthogonal to every vector in W.

VwveW, Qe K W QWirGWe G,
7/
(inee B spam W)

= Wbt = c@e k) + (@b (Ws * Voat))

(sineg Aok podudk s Rineen)

=¢-0%Cp0F 'O (4ven L conditiom)

-._-.O‘

-t =D

(continued on reverse)
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(¢) [4 points] Let b, & be as in part (b). Prove that if 7 is any other vector in W, then

16— &> = |Ib — @l + & - a1

Obseave  thak o,V eW = G-Vew

(sinte subipater a closed

undon subbnaction)

hence by port (b),  (E-V). L (b-u .

Thus by the Pythag. +thm. o innu motfu.cF spatu,

e G 1= flei+ bt

I [ §-v It = Ha__\'/'n"- ol b-ulll

a» duired .



Math 272, Spring 2019 Final Exam

7. Define a map T : P, — R? by the formula

»(0)
T(@) = | 7o) |
)

T is a linear transformation (you do not need to prove this).

(a) [4 points] Let B = {(z — 1){z — 2), z(z — 2), x{z — 1)}. This is a basis of P (you do
not need to prove this). Let § denote the standard basis of RY. Determine the matrix
representation [T']7, of T' with respect to the basis B of P, and the standard basis S of

| | |

S
[ﬂs S [T(ed)g - (T, [ Th),

| | |
| |

T(aa)  T(xka))  T(&&-0)

\ |

I

(0 -\{o-2) 0- {0-2) 0 -(0-1)
= (-0 -2 1+ (1-2) Y
Ve z(2) 2@
(1) (3-2) 2-13-2) 3-3-)
2. o ©
- o %\ 0
o o 2
Z 3 g
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(b) (3 points] Let A be the matrix [T]3 obtained in the previous part. Prove that b € R(T)
if and only if the matrix equation AX = b is consistent.

beRM (= FpeR o ThHW) =k (da;'n(_o{]
Elp&) €Pa sk . . ‘
S [TlpWls = CORUALY

-3 l]tPl W\,

[Tjn [P(ﬂ]g =b (defa of LTIS)

N gz} $ 2 % {taldng wads v
= xR [Tl X =b ( i averkisle)

(= IRelR’ & AX=b

= AX=b » comitkenk

(c) [3 points] Suppose that we are given four constants a, b, ¢, d, and wish to find a polynomial
p(x) € P2 whose graph passes through the four points (0,a), (1, ), (2, ¢), (3,d). For which
values of e, b, ¢, d is this possible? Express your answer as a linear equation in a, b, ¢, and
d.

Hint: interpret this as asking when a linear system is consistent, using the previous part.
- fo) a
y= Pl poma Hhrough thx ph. iff (Pph) ) - [ b)

ply ¢
ph &

= T{p) = (g) = AX _‘E( ) i comvipd ( pott (8.
2 h Wept z o o a w:.:ﬁ'k v ) oG
Row mJutmg g 5 - o lb % -3317_&3 A
° ° ¢ < - o o (4 c
1
= 3'3 d:‘f l (:-la +3b -3¢ © O © |d-a+db-

This ity in REF (Hﬂuu‘!"‘ ot RREF), gnd b comyiddewt
e e sk o ot necd O=1,

stch p(&)wﬁxh i d-a+3b-3¢=0

Ve Ea-\-gb-gc vk = OJ
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8. [9 points| Let A be an n X n matrix, and A a scalar. Define as usual the following set (called
the eigenspace in class).
Vi={0€eR": A¥ = A7}

Prove that V), is a subspace of R™.

B‘j Q MU.H‘ in ClCW), \/)\ w QA Su\)ma \'_F_F ”_"-A d

Y)DNMP""‘-\, covd uvde additim , & clowd undn sl
multiplication.

we  will checle each of thow +he oituia.

A'a 5 = 3\5’

nonemp kinem
, wne Va o nonpﬁL

SO De W

closwr undu + Suppose ¥, W eVn e AT\ & AW=NW,

vy \ H l‘f
T AR = A SR (Mﬁyﬁﬁibuﬁw\

(haw ¥ €N

N W) (scalon mault. 1 Aalnmubw)

5 Viw e V.

closurcundu sealon « Supposc veVa and cel

seeton mudt. commuta

Then Alcv) = c(A) o e mell)

= C (?\'\’I) (Gewn)
= (Nv = AV) (scaloaamult. i associcH vel

50 cUEVx.

So Hae thee ontaia bold, & Vi o incleed a &ab.fpace_
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9. In a certain town, 8000 customers subscribe to internet service from company A. A competitor,
company B, enters the market and begins to draw customers from company A.

Suppose that every year, 10% of company A’s customers change their service to company B,
and 30% of company B’s customers change their service to company A.

For example:

¢ In the first year, 800 customers (10% of 8000} change service from A and B, after which
company A has 7200 customers and company B has 800 customers.

¢ In the second year, 720 customers (10% of 7200) switch from A to B, and 240 customers
(30% of 800) switch from B to A. So after two years, company A has 7200 — 720 + 240 =
6720 customers and company B has 800 4+ 720 — 240 = 1280 customers.

(a) [2 points] Find a 2 x 2 matrix M encoding the change in number of customers of each
company from one year to the next. More precisely: if a, b denote the number of customers
of companies A and B (respectively) in a given year, and a',d denote the number of
customers in the following year, the matrix M should satisfy

(5)=4)

You can check your answer by verifying that
7200\ _ 8000 6720\ _ , o (8000
(80[}) "M( 0 ) and (1280)_M ( 0 )

a‘ (l'— O.\)a+ O’Sb

Vo= ola + (1-0.3)%

- G‘: O.Cla+ 0'3\2
£1 % =0\la + 03

e (D)= (58 22

0.9 6-3
0.\ 0.3

o | M= (

(continued on reverse)
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(b) [6 points] Find the eigenvalues of M, and an eigenvector for each eigenvalue.

cho. egn:

det(M-2T) = O

o ()

&= (0.9- N (03F-N) - 0300 =0
(= e BN« 0.63 —0.03 =0
=S AL -+ 0.6 =0
= (A=) h-0.6)=0D

so thew ot two -ei%fnvcf(um% ?\=1_ & \

0.q-1 03\ _ -0.| o.3)
A=l Vi= N(‘M o.q-\)— N(o.\ -0.3

= N ( | _3) (rowop RL+=RI, Riss (-z‘;'.\))

o o -
= span (?) )\:( how ef@(l}\\/&&U‘ (%J]
; O
206 Vo.s = N(bfjo'b o:(:j).b} = N (Dc:\ o-\)
- N (l \ ) (row on R1-=4RI, RI¥= (53))
L o 0
= span ("t )

‘\:0.(, hax eig/mvcchr (‘,‘]
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\ 8000 . P . -
(c) [3 points] Express 0 )28 linear combination of the eigenvectors you found in part
(b).

R2-=3R|

3 = 000 3 -y | %000
—

| l 0 o 4h | g00oh

- + i3 5300"!‘3

R1¥ =3y

Ry +=NL \ (o) 72000

o f_";‘ (ur com!‘“k
0 . |2oo0

2e)

50 ([(_5030) = 2000- ( )—zoocm
-

S

(d) [3 points] Find a formula for M™ (8000)

0o ) and use your formula to evaluate lim M™ (8000) .

n—co0 0
M (%) = zoo0 mo(3) - zooo-m" ()

way T [ L (woaity)
fulplee fo ched ]
:iw n=ocaw« - 2000~ 1" (}) - 2000- (0.6)" )
©wo
n=| g\,f:) o) = 2000 (3 ) - 2000~ (061 )

N=2aNve (6?10

1280 /. ”\_) - (6OOOJ+ (0.6)‘“(*2000)

2000 -2000

so the sheady- tote in
1000
for w(0) = (Soa)+ (A o). (zm

M= bOOO) O (ZDOO] - £000
= | zooo /T U \-2000 = 2.000
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