Name: Sofutions

Read This First!

- You are allowed one page of notes, front and back. No other books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.
- Please read each question carefully. Show ALL work clearly in the space provided. There is an extra page at the back for additional scratchwork.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.

Grading - For Instructor Use Only

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	9	9	9	12	12	9	9	9	12	90
Score:										

1. [9 points] When titanium tetrachlroide is sprayed into the air, it reacts with water vapor to form hydrogen chloride and fine particles of titanium dioxide (sometimes used to create smoke screens). The reaction can be expressed in the chemical equation

$$
X_{1} \mathrm{TiCl}_{4}+X_{X_{2}}^{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \mathrm{XiO}_{3} \underset{X_{4}}{\mathrm{THCl}}
$$

Write and solve a system of linear equations to balance this chemical equation.
one ean for each element:

$$
\begin{array}{rl}
T_{i} & x_{1}=x_{3} \\
c_{2} & 4 x_{1}=x_{4} \\
H & 2 x_{2}=x_{4} \\
0 & x_{2}=2 x_{3}
\end{array}
$$

ie

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
4 & 0 & 0 & -1 \\
0 & 2 & 0 & -1 \\
0 & 1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Row-nedrecing gives:

$$
\xrightarrow{R 2=4 R 1}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 4 & -1 \\
0 & 2 & 0 & -1 \\
0 & 1 & -2 & 0
\end{array}\right) \xrightarrow{\substack{R 3-22 R 4 \\
R 2 \leftrightarrow R 4}}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 4 & -1 \\
0 & 0 & 4 & -1
\end{array}\right)
$$

$$
\xrightarrow{\substack{R 4-=R 3 \\
R 2+=\frac{1}{2} R 3 \\
R+=\frac{i}{2} \pi 3 \\
R 3+1 / 4}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right.
$$

So the ginil sain is

The smallest integer sulu is ($x_{4}=4$)

$$
\begin{aligned}
1 \cdot \mathrm{TiCl}_{\mathrm{I}} & +2 \cdot \mathrm{H}_{2} \mathrm{O} \\
& \longrightarrow 1 \cdot \mathrm{TiO}_{2}+4 \cdot \mathrm{HCl} .
\end{aligned}
$$

2. [9 points] Suppose that there are two cities, A and B. Every year, 20% of the citizens of city A relocate to city B, and 10% of the citizens of city B relocate to city A.
(a) Viewing the movement of population between these cities as a Markov process, find the transition matrix T of this process. More explicitly, T should be a matrix with the following property: if a and b are the current populations of cities A and B, then the two coordinates of $T\binom{a}{b}$ are the populations of A and B next year.

$$
T=\left(\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)
$$

(b) What percentage of the current population of A will live in city A two years later?

$$
\begin{aligned}
T^{2} & =\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right)\left(\begin{array}{cc}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.64+0.02 & 0.08+0.09 \\
0.16+0.18 & 0.02+0.81
\end{array}\right) \\
& =\left(\begin{array}{ll}
0.66 & 0.17 \\
0.34 & 0.83
\end{array}\right)
\end{aligned}
$$

So 66% of tho years pop. in A will be in A after two years.
(64% stay the whom time, whit
(continued on reverse) 2% more to B then move back).
(c) Find the steady-state probability vector for this process.

$$
\begin{aligned}
& T \& \vec{s}=\vec{s} \\
& \vec{s} \in N(T-I) \\
& T-I=\left(\begin{array}{cc}
-0.2 & 0.1 \\
0.2 & -0.1
\end{array}\right) \\
& \xrightarrow{\text { TREF }}\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right) \\
& \text { So genit solin to }(T-I) \vec{x}=\overrightarrow{0} \text { is }\binom{\frac{1}{2} y}{y}(y \text { free). }
\end{aligned}
$$

The mob. vector in this set is the one where

$$
\frac{1}{2} y+y=1 \quad \text { ie. } \quad y=\frac{2}{3}
$$

$$
\vec{s}=\binom{1 / 3}{2 / 3}
$$

3. [9 points] Suppose that V and W are two vector spaces of the same dimension, and that $T: V \rightarrow W$ is a linear transformation.
(a) Prove that if T is one-to-one, then T is also onto.

$$
\begin{aligned}
T \text { me-to-ive } & \Rightarrow \operatorname{dim} N(T)=0 \\
& \Rightarrow \operatorname{dim} R(T)=\operatorname{dim} V \quad(\operatorname{dince} \operatorname{dim} V=\operatorname{din} R(T)+\operatorname{dim} N(T) \\
& \Rightarrow \operatorname{dim} R(T)=\operatorname{dim} W \\
& \quad \text { (since } \operatorname{dim} V=\operatorname{dim} W) \\
& \Rightarrow T \text { is onto. }
\end{aligned}
$$

(b) Prove, conversely, that if T is onto, then T is one-to-one.

$$
\begin{aligned}
& T \text { ont } \begin{aligned}
& \Rightarrow \operatorname{dim} R(T)= \\
& \operatorname{dim} W \\
& \Rightarrow \operatorname{dim} R(T)=\operatorname{dim} V \quad(\sin u \operatorname{dim} V=\operatorname{dim} W) \\
& \Rightarrow \operatorname{dim} N(T)+\operatorname{dim} V=\operatorname{dim} V \\
&(\operatorname{since} \operatorname{dim} N(T)+\operatorname{dim} R(T)=\operatorname{dim} V \\
&\& \operatorname{dim} R(T)=\operatorname{dim} V)
\end{aligned} \\
& \Rightarrow \operatorname{dim} N(T)=0 \\
& \Rightarrow T \text { is one-to-one. }
\end{aligned}
$$

(c) Prove that if V and W have different dimensions, then it is impossible for T to be both one-to-one and onto.

We move the contrapositive: if T is both one-to-one \& onto (ic. an isomorphism), then $\operatorname{dim} V=\operatorname{dim} W$.

Assume T is both one-to-one 2 onto.
Then

$$
\begin{aligned}
& \operatorname{dim} N(T)=0 \\
& \text { and } \operatorname{dim} R(T)=\operatorname{dim} W
\end{aligned}
$$

So since $\quad \operatorname{dim} N(T)+\operatorname{dim} R(T)=\operatorname{dim} V \quad$ (Tanh- nullityl,
it follows that $\quad O+\operatorname{dim} W=\operatorname{dim} V$

$$
\text { ie. } \quad \operatorname{dim} W=\operatorname{dim} V
$$

Hence if $\operatorname{dim} W \neq \operatorname{dim} V$, then T cannot be both one-to-one \& onto.
4. [12 points] Denote by \mathcal{P}_{2} the vector space of polynomials of degree at most 2 .
(a) Consider the basis $B=\left\{x+1, x^{2}+x, x^{2}+1\right\}$ of \mathcal{P}_{2}. Find the coordinates $\left[x^{2}\right]_{B}$ of x^{2} in the basis B.

$$
\begin{aligned}
& c_{1}(x+1)+c_{2}\left(x^{2}+x\right)+c_{3}\left(x^{2}+1\right)=x^{2} \\
& \Leftrightarrow\left\{\begin{array}{c}
c_{1}+c_{3}=0 \\
c_{1}+c_{2}=0 \\
c_{2}+c_{3}=1
\end{array}\right.
\end{aligned}
$$

$$
\left(\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 12
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{lll|l}
1 & 0 & 0 & -112 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 2
\end{array}\right) \text { so }\left[X_{B}^{2}\right]_{B}=\left[\begin{array}{c}
1 \\
-1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right)
$$

(b) Let $S=\left\{1, x, x^{2}\right\}$ denote the standard basis of \mathcal{P}_{2}, and let B be the basis from part (a). Determine the two change of basis matrices $[I]_{B}^{S}$ and $[I]_{S}^{B}$.
$[I]_{B}^{5}$ is easier to see by inspection:

$$
\begin{aligned}
& {[x+1]_{S}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)_{1} \quad\left[x^{2}+x\right]_{5}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .\left[x^{2}+1\right]_{S}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)} \\
& \text { so } \quad[I]_{B}^{s}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Now, $[I]_{s}^{B}$ is the inverse.

$$
\left.\begin{array}{l}
\left(\begin{array}{lll|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
\end{array}>\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 / 2 & -1 / 2 & 1 / 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 2 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & -1 / 2 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 & 1 / 2 & -1 / 2 & 1 / 2
\end{array}\right)\right] \text { (continued on reverse) }
$$

so
(c) Consider the linear operator $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by

$$
T(p(x))=x \cdot p^{\prime}(x)
$$

(where $p^{\prime}(x)$ denotes the derivative of $p(x)$). Find the matrix representation $[T]_{S}$ of T in the standard basis S.

$$
\begin{aligned}
& {[T(1)]_{S}=[x \cdot 0]_{S}=[0]_{S}=\binom{0}{0}} \\
& {[T(x)]_{S}=[x \cdot 1]_{S}=[x]_{S}=\binom{0}{0}} \\
& {\left[T\left(x^{2}\right]_{S}=[x \cdot 2 x]=\left[2 x^{2}\right]_{S}=\binom{0}{0}\right.} \\
& \text { so }[T T]_{S}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(d) What is the matrix representation $[T]_{B}$ of T in the basis B ? You may express your answer in terms of your answers to parts (b) and (c), without simplifying any matrix multiplication.

$$
\begin{aligned}
{[T]_{B} } & =[I]_{S}^{B}[T]_{S}[I]_{B}^{S} \\
& =\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

(this evaluates to

$$
\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & -1 \\
1 / 2 & 3 / 2 & 1 \\
-1 / 2 & 1 / 2 & 1
\end{array}\right)
$$

5. [12 points] Consider the matrix $A=\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$.
(a) Determine the eigenvalues of A.

$$
\text { choc., } \begin{aligned}
&\left|\begin{array}{cc}
1-\lambda & 1 \\
-2 & 4-\lambda
\end{array}\right|=0 \\
&(1-\lambda)(4-\lambda)+2=0 \\
& \lambda^{2}-5 \lambda+6=0 \\
&(\lambda-2)(\lambda-3)=0 \\
& \\
& \lambda_{1}=2, \lambda_{2}=3
\end{aligned}
$$

(b) For each eigenvalue, find a nonzero eigenvector.

$$
\begin{aligned}
& V_{2}=N\left(\begin{array}{cc}
1-2 & 1 \\
-2 & 4-2
\end{array}\right)=N\left(\begin{array}{cc}
-1 & 1 \\
-2 & 2
\end{array}\right)=N\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \\
&\left.=\operatorname{span}\left\{\binom{1}{1}\right\} ; \quad \text { let } \quad \begin{array}{l}
\vec{V}_{1}
\end{array}\right) \\
&\left.\begin{array}{rl}
V_{3} & =N\binom{1}{1} . \\
-2 & 4-3
\end{array}\right)=N\left(\begin{array}{cc}
-2 & 1 \\
-2 & 1
\end{array}\right)=N\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right) \\
&=\operatorname{span}\left\{\binom{1 / 2}{1}\right\} . \quad \operatorname{let} \quad \vec{V}_{2}=\binom{1}{2}
\end{aligned}
$$

(continued on reverse)
(c) Diagonalize the matrix A (that is, determine matrices P and D such that $A=P D P^{-1}$, where D is a diagonal matrix).

$$
\begin{array}{rc}
P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) & \begin{array}{c}
\text { change of bans from } \\
\left.\left\{\vec{v}_{11} \vec{v}_{2}\right\} \text { to standard }\right\}
\end{array} \\
D=\left(\begin{array}{ll}
z & 0 \\
0 & 3
\end{array}\right) & \begin{array}{c}
\text { eigenvalues on diagonal); } \\
\text { this is the mativi, } \\
\text { rep in basis } \left.\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}\right\} .
\end{array}
\end{array}
$$

(d) Find an explicit formula for A^{n}. In your answer, each of the four entries of A^{n} should be given as an explicit formula of n.

$$
\begin{aligned}
A^{n} & =P \cdot D^{n} \cdot P^{-1} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
2^{n} & 3^{n} \\
2^{n} & 2 \cdot 3^{n}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 \cdot 2^{n}-3^{n} & -2^{n}+3^{n} \\
2 \cdot 2^{n}-2 \cdot 3^{n} & -2^{n}+2 \cdot 3^{n}
\end{array}\right) \\
\text { or, alternatively, } & 2^{n} \cdot\left(\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right)+3^{n} \cdot\left(\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right)
\end{aligned}
$$

6. [9 points] Consider the following matrix.

$$
A=\left(\begin{array}{llc|c|c}
1 & 1 & -2 & 0 & 2 \\
1 & 0 & 3 & 0 & 1 \\
1 & 2 & -7 & 7 & 10 \\
1 & 3 & -12 & 0 & 4
\end{array}\right)
$$

You may use, without proof, that the matrix row-reduces to the following matrix (in reduced echelon form).

$$
\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & 1 \\
0 & (1) & -5 & 0 & 1 \\
0 & 0 & 0 & (1) & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Find a basis for the span of the columns of A.

The RREF has pivots in columns $1,2,24$.
so these columns give a basis for the span in the original matrix.

$$
\left\{\left(\begin{array}{l}
i
\end{array}\right),\left(\begin{array}{c}
i \\
\vdots \\
0
\end{array}\right),\binom{0}{\vdots}\right\} \text {. }
$$

(b) Find a basis for the null space of A.

Gevil solinto $A \bar{x}=0$ is

$$
\begin{aligned}
& x_{1}=-3 x_{3}-x_{5} \\
& x_{2}=5 x_{3}-x_{5} \\
& x_{3} \text { free } \\
& x_{4}=-x_{5}
\end{aligned}
$$

x_{5} free
in vector form:

$$
\left(\begin{array}{c}
-3 x_{3}-x_{5} \\
5 x_{3}-x_{5} \\
x_{3} \\
-x_{5} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-3 \\
5 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1
\end{array}\right)
$$

(c) Find the general solution (in terms of one or more free variables) of the matrix equation

$$
A \vec{x}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Hint: The right side of this equation is equal to the first column of A. Use this to find one specific solution, and then deduce the general solution from this.
one specific soln is $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$, since $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ is the $1^{\text {st }}$ column of A.

So the gexel suln is given by this specific sulin plus a solution to $A \vec{x}=\overrightarrow{0}$, ic

$$
\vec{x}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-3 \\
5 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1
\end{array}\right) \quad \begin{aligned}
& \text { w } 1 x_{3} x_{5} \\
& \text { free }
\end{aligned}
$$

or, in coordinates.

$$
\begin{aligned}
& x_{1}=1-3 x_{3}-x_{5} \\
& x_{2}=5 x_{3}-x_{5} \\
& x_{3}=\text { free } \\
& x_{4}=-x_{5} \\
& x_{5} \text { free }
\end{aligned}
$$

7. [9 points] (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by reflection across the line $y=\frac{1}{2} x$. Find the matrix representation of T in the standard basis.

we can choose another basis where T is ecasien to unite down:
$\vec{v}_{1}=\binom{2}{1}$ (on the axis)
$\vec{V}_{2}=\binom{-1}{2} \quad$ (respendirclan to the axis)
so $\quad T \vec{v}_{1}=\vec{v}_{1} \quad \& \quad T \vec{v}_{2}=\left\{-\vec{v}_{2}\right.$.
So in basis $B=\left\{\binom{2}{1},\binom{-1}{2}\right\}$, we have

$$
[T]_{B}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
{[T]_{S} } & =[I]_{B}^{S}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)[I]_{S}^{B} \\
& =\left(\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right) \cdot \frac{1}{5}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right)
\end{aligned}
$$

(b) Let $A=\frac{1}{13}\left(\begin{array}{cc}5 & +12 \\ 12 & -5\end{array}\right)$. This is the matrix representation of reflection across some line through the origin in \mathbb{R}^{2} (the "axis of reflection."). What is the axis of reflection?

The axis must be the eigenspace of $\lambda=1$, ic
the nullspace of

$$
\begin{aligned}
& \frac{1}{13}\left(\begin{array}{cc}
5 & +12 \\
12 & -5
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
-8 / 13 & +12 / 13 \\
12 / 13 & -18 / 13
\end{array}\right) \\
& \xrightarrow{\text { RREF }}\left(\begin{array}{cc}
1 & -3 / 2 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

so V_{1} is spanned by $\binom{3 / 2}{1}$.
ic. it is
the line $y=\frac{2}{3} x$
8. [9 points] Consider the following three points in the plane:

$$
\left(x_{1}, y_{1}\right)=(1,2), \quad\left(x_{2}, y_{2}\right)=(3,2), \quad\left(x_{3}, y_{3}\right)=(3,1)
$$

Suppose that we wish to find a line of best fit for these three points. This problem concerns two ways to do this, which optimize different choices of "error function."
(a) Suppose we wish to find the coefficients of a line in the form $y=c_{1} x+c_{2}$ that minimizes

$$
\sum_{i=1}^{3}\left(c_{1} x_{i}+c_{2}-y_{i}\right)^{2}=\left\|c_{1}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right)\right\|^{2}
$$

Determine three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{b}$ such that this problem is equivalent to minimizing

$$
\left\|c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}-\vec{b}\right\|
$$

$$
\text { Let } \quad \begin{aligned}
& \vec{V}_{1}\left.=\left(\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right)=\begin{array}{l}
\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right) \\
\vec{V}_{2}
\end{array}\right) \\
& \vec{b}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)
\end{aligned}
$$

(b) Find a linear system of equations whose solution gives the optimal choice of c_{1}, c_{2} in the previous part. You do not need to solve the system. It is sufficient to write the equations.

The normal eqin for this least squares problem is

$$
\begin{aligned}
& \left(\begin{array}{cc}
\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}} & \vec{v}_{1} \cdot \vec{v}_{2} \\
v_{2} \cdot \overrightarrow{v_{1}} & \vec{v}_{2} \cdot \overrightarrow{v_{2}}
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{c}
\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}} \cdot \vec{b}
\end{array}\right) \\
& \text { ie. }\left(\begin{array}{cc}
19 & 7 \\
7 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{11}{5}
\end{aligned}
$$

not necessary to write but: the solution is

$$
C_{1}=-1 / 4, \quad c_{2}=9 / 4
$$

\& the line is $y=-\frac{1}{4} x+\frac{a}{4}$

(c) Now suppose that we wish to find the coefficients of a line in the form $x=c_{1} y+c_{2}$ that minimize

$$
\sum_{i=1}^{3}\left(c_{1} y_{i}+c_{2}-x_{i}\right)^{2}
$$

Find a linear system of equations whose solution gives the optimal choice of c_{1} and c_{2} in this case. You do not need to solve the system.

Like before, we find $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \vec{b}$:

$$
\vec{v}_{1}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right)
$$

\& the normalecin is

$$
\left(\begin{array}{ll}
\vec{v}_{1} \overrightarrow{v_{1}} & \vec{v}_{2} \vec{v}_{2} \\
\vec{v}_{2} \vec{v}_{1} & \vec{v}_{2} \cdot \vec{v}_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{\overrightarrow{v_{2}} \overrightarrow{v_{2}}}{\vec{v}_{2}}
$$

$$
\left(\begin{array}{ll}
9 & 5 \\
5 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{11}{7}
$$

If solved, this gives $c_{1}=-1, \quad c_{2}=4$
so the line is $x=-y+4$, ie. $y=-x+4$.

9. [12 points] Suppose that $B=\left\{\vec{v}_{1}, \cdots \vec{v}_{n}\right\}$ is a basis for a vector space V, and $T: V \rightarrow W$ is a linear transformation.
(a) Prove that T is one-to-one if and only if $\left\{T\left(\vec{v}_{1}\right), \cdots, T\left(\vec{v}_{n}\right)\right\}$ is linearly independent.

Suppose that I is onetorone.
Then for all c_{i}, \cdots, c_{n} such that $\sum_{i=1}^{n} C_{i} T\left(\vec{v}_{i}\right)=\overrightarrow{0}_{\text {, }}$ it follows that $T\left(\sum_{i=1}^{n} C_{i} \vec{v}_{i}\right)=\overrightarrow{0} \quad(T$ is lineal). hence $\sum_{i=1}^{n} c_{i} \vec{v}_{i}=\overrightarrow{0}$, since T is one-to-ore.

Since B is a basin. it in $L I$, so itfollews that $C_{1}=c_{1}=\cdots=c_{n}=0$.
Hence $T(\vec{v}), \ldots, T\left(\vec{v}_{n}\right)$ are LI.
Conversely suppose that $T\left(\vec{v}_{1}\right) \ldots T\left(\vec{v}_{n}\right)$ are LI.
Fol any $\vec{v} \in N(T)$, we can write $\vec{v}=\sum_{i=1}^{n} c_{i} \vec{v}_{i}$ (since B spans v), hence $T(\vec{r})=\bar{c} \Rightarrow \sum_{i=1}^{n} c_{i} T\left(\vec{v}_{i}\right)=0$ (T is (linen). Since $T \rightarrow T\left(\vec{v}_{1}\right), \cdots, T\left(v_{n}\right)$ are $L I$, it fellow that all c_{i} are 0 , so $\vec{v}=\overrightarrow{0}$ as well. So $N(T)$ contain only $\overrightarrow{0}$. ic. T is ore-to-ore.
(b) True of False (no explanation needed): the statement in part (a) remains true if $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ is only assumed to be linearly independent (not necessarily a basis).

Fable (observe: the proof above used both that B is LI\& that it spars V.
A counterexample if it doesn'tspan
V let $V=\mathbb{R}^{2}, \quad B=\{(0)\}, \&$

$$
\left.T(\vec{x})=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \vec{x}\right)
$$

(continued on reverse)
(c) Prove that T is onto if and only if $\left\{T\left(\vec{v}_{1}\right), \cdots, T\left(\vec{v}_{n}\right)\right\}$ spans W.

Suppose T is onto.
Then for all $\vec{w} \in W$, there is some $\vec{v} \in V$ sot. $T(\vec{v})=\vec{w}$ (T is onto). Since B spam V_{1} there exist c_{1}, \cdots, c_{n} with $\vec{v}=\sum c_{i} \vec{v}_{i}$.
Then $\bar{w}=T\left(\sum_{i=1}^{n} c_{i} \vec{v}_{i}\right)=\sum_{i=1}^{n} c_{i} T\left(\vec{v}_{i}\right) \quad$ (T is lineca) so $\bar{w} \in \operatorname{span}\left\{T\left(\vec{v}_{1}\right), \cdots, T\left(\vec{v}_{n}\right)\right\}$.
Hence c all $\vec{w} \in W$ are in this span, so $\left\{T(v), \cdots, T\left(v_{n}\right)\right\}$ spams W.
Conversely. suppose $\left\{T\left(\overrightarrow{v_{1}}\right), \cdots, T\left(\vec{v}_{n}\right)\right\}$ spars W.
Then fer all $\vec{w} \in W, \exists c_{i}, \cdots, c_{n}$ st. $\vec{w}=\sum_{i=1}^{n} c_{i} T\left(\vec{v}_{i}\right)$. So $\vec{w}=T\left(\sum_{i=1}^{n} c_{i} \vec{v}_{i}\right)$, so $\quad \vec{w} \in R(T)$.
Hence all $\vec{w} \in W$ are in $R(T)$. ie. T is onto.
(d) True of False (no explanation needed): the statement in part (c) remains true if $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ is only assumed to span V (but is not necessarily a basis).

True. The moot above used that B spans V. but not that B is LI.

