1. [9 points] Solve the following linear system of equations.

$$
\begin{array}{rlrl}
4 x_{2}+12 x_{3}-7 x_{4} & =8 \\
x_{2}+3 x_{3}-2 x_{4} & =1 \\
x_{1}-2 x_{2} & -4 x_{3}+5 x_{4} & =9
\end{array}
$$

2. [9 points] Describe all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ that commute with the matrix $A=\left(\begin{array}{cc}3 & 4 \\ -4 & 3\end{array}\right)$.

Note: There are infinitely many such matrices; one way to express your answer is to express a, b, c, d in terms of one or more free variables.
3. [9 points] Suppose that A is a 2×2 matrix that transforms the unit square in the plane in the manner shown below.

(a) Determine A. There are more than one possible answer; you only need to give one.
(b) Using the matrix A you found in part (a), determine the area of the parallelogram in the second picture.
4. [9 points] (a) Find the determinants of the following two matrices.

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 7 \\
1 & 2 & 5
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & -1 & 5 \\
1 & 0 & 9 \\
2 & -1 & 14
\end{array}\right)
$$

(b) One of the matrices A, B is invertible, while the other one is not. Determine which is which, and then compute the inverse of the one that is invertible.
5. [9 points] Consider the following four vectors.

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}
8 \\
-3 \\
-1
\end{array}\right)
$$

Express \vec{b} as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
6. [9 points] Suppose that A and B are both $n \times n$ matrices, and that the product $A B$ is invertible. Prove that A is also invertible.

