1. [9 points] Solve the following system of linear equations.

$$
\begin{aligned}
& x_{2} & +x_{3}+x_{4} & =5 \\
x_{1} & & +3 x_{3}+7 x_{4} & =14 \\
x_{1} & & +2 x_{3}+5 x_{4} & =11
\end{aligned}
$$

2. [9 points] Recall that two matrices A, B commute if $A B=B A$. Consider the following three matrices.

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad C=\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right)
$$

(a) Determine whether A and B commute. (c) Determine whether A and C commute.
(b) Determine whether B and C commute.
3. [9 points] (a) Suppose that A is an $n \times n$ matrix. Show that if A is invertible, then $A \vec{x}=\overrightarrow{0}$ has no nontrivial solutions \vec{x}.
(b) Using part (a), show that $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ 2 & -3 & 1 \\ -1 & -1 & 2\end{array}\right)$ is not an invertible matrix. (Hint: the numbers in each row sum to 0 .)
4. [9 points] The augmented matrix of a linear system has the form

$$
\left(\begin{array}{cccc}
1 & 2 & -1 & a \\
2 & 3 & -2 & b \\
-1 & -1 & 1 & c
\end{array}\right) .
$$

(a) Determine the values of a, b, c for which this linear system in consistent.
(b) For those values of a, b, c for which the system is consistent, does it have a unique solution or infinitely many solutions? Briefly explain why.
5. [9 points] Write a system of linear equations that describes the traffic flow pattern for the network in the figure. You do not need to solve the system.

6. [9 points] Consider the following three vectors.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

(a) Show that the only choice of constants c_{1}, c_{2}, c_{3} such that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$ is $c_{1}=$ $c_{2}=c_{3}=0$.
(b) Find scalars (constants) c_{1}, c_{2}, c_{3} such that the vector

$$
\vec{v}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

is equal to $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}$.

