1. Short answer questions. No explanations are necessary.
(a) Give a basis for each of the following vector spaces.

- \mathbb{R}^{3}
- $M_{2 \times 2}$ (the space of 2×2 matrices)
- \mathcal{P}_{2} (the space of polynomials of degree at most 2)
(b) Suppose that B and B^{\prime} are two bases for a vector space V, and the change of basis matrix is

$$
[I]_{B}^{B^{\prime}}=\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right)
$$

Let $\vec{v} \in V$ be a vector such that $[\vec{v}]_{B}=\binom{1}{1}$. Determine $[\vec{v}]_{B^{\prime}}$.
(c) Find the multiple of $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ that is closest to the vector $\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$.
2. Consider the two bases $B=\left\{\binom{3}{1},\binom{1}{3}\right\}$ and $B^{\prime}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$ for \mathbb{R}^{2}. Find the change of basis matrix $[I]_{B}^{B^{\prime}}$.
3. Consider the following three vectors in \mathbb{R}^{4}.

$$
\vec{u}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right)
$$

$$
\vec{v}=\left(\begin{array}{l}
2 \\
4 \\
1 \\
4
\end{array}\right)
$$

$$
\vec{w}=\left(\begin{array}{l}
3 \\
6 \\
1 \\
6
\end{array}\right)
$$

Denote by W the span of $\{\vec{u}, \vec{v}, \vec{w}\}$.
(a) Find a basis of W.
(b) What is the dimension of W?
(c) Find an orthonormal basis for W. (Recall that a basis is called orthonormal if any two vectors in the basis are orthogonal, and each vector has norm equal to 1.)
(d) What element of W is closest to the vector $\vec{b}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$? (In other words, which element \vec{x} of W minimizes $\|\vec{x}-\vec{b}\|$?)
4. Suppose that V is an inner product space, and \vec{u}, \vec{v} are two nonzero vectors in V such that $\langle\vec{u}, \vec{v}\rangle=0$. Prove, directly from the axioms of an inner product, that

$$
\|\vec{u}+2 \vec{v}\|>\|\vec{u}\| .
$$

5. Suppose that $f(x)$ is a continuous function on the interval $[-\pi, \pi]$ that has been measured in a laboratory. You have reason to believe that the function should be approximately equal to
some linear combination of $\sin (x)$ and $\cos (x)$. Using your experimental data, you compute the following integrals.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \sin x d x & =7 \\
\int_{-\pi}^{\pi} f(x) \cos x d x & =13
\end{aligned}
$$

You may also use, without proof, the values of the following integrals.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin ^{2} x d x & =\pi \\
\int_{-\pi}^{\pi} \sin x \cos x d x & =0 \\
\int_{-\pi}^{\pi} \cos ^{2} x d x & =\pi
\end{aligned}
$$

(a) Let $V=\mathcal{C}^{(0)}[-\pi, \pi]$ denote the vector space of continuous functions on $[-\pi, \pi]$. Define an inner product on V, and identify each of the five integrals above as an inner product $\langle f, g\rangle$ of two elements f, g of V.
(b) Suppose that we choose two constants c_{1}, c_{2} and define a function $g(x)$ as follows:

$$
g(x)=c_{1} \sin x+c_{2} \cos x .
$$

Find the values of c_{1}, c_{2} that will ensure that $\int_{-\pi}^{\pi}(f(x)-g(x))^{2} d x$ is as small as possible.
6. [9 points] Suppose that A is an $m \times n$ matrix, and $\vec{u}, \vec{v}, \vec{w}$ are three vectors in \mathbb{R}^{n} such that $\{A \vec{u}, A \vec{v}, A \vec{w}\}$ is a linearly independent set of vectors. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is also a linearly independent set of vectors.

