- 1. Short answer questions. No explanations are necessary.
 - (a) Give a basis for each of the following vector spaces.
 - \mathbb{R}^3
 - $M_{2\times 2}$ (the space of 2×2 matrices)
 - \mathcal{P}_2 (the space of polynomials of degree at most 2)
 - (b) Suppose that B and B' are two bases for a vector space V, and the change of basis matrix is

$$[I]_B^{B'} = \begin{pmatrix} 3 & -4\\ 4 & 3 \end{pmatrix}$$

Let $\vec{v} \in V$ be a vector such that $[\vec{v}]_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Determine $[\vec{v}]_{B'}$.

(c) Find the multiple of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ that is closest to the vector $\begin{pmatrix} 2\\3\\7 \end{pmatrix}$.

- 2. Consider the two bases $B = \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$ and $B' = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ for \mathbb{R}^2 . Find the change of basis matrix $[I]_B^{B'}$.
- 3. Consider the following three vectors in \mathbb{R}^4 .

$$\vec{u} = \begin{pmatrix} 1\\ 2\\ 0\\ 2 \end{pmatrix} \qquad \qquad \vec{v} = \begin{pmatrix} 2\\ 4\\ 1\\ 4 \end{pmatrix} \qquad \qquad \vec{w} = \begin{pmatrix} 3\\ 6\\ 1\\ 6 \end{pmatrix}$$

Denote by W the span of $\{\vec{u}, \vec{v}, \vec{w}\}$.

- (a) Find a basis of W.
- (b) What is the dimension of W?
- (c) Find an *orthonormal* basis for W. (Recall that a basis is called *orthonormal* if any two vectors in the basis are orthogonal, and each vector has norm equal to 1.)
- (d) What element of W is closest to the vector $\vec{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$?

(In other words, which element \vec{x} of W minimizes $\|\vec{x} - \vec{b}\|$?)

4. Suppose that V is an inner product space, and \vec{u}, \vec{v} are two nonzero vectors in V such that $\langle \vec{u}, \vec{v} \rangle = 0$. Prove, directly from the axioms of an inner product, that

$$\|\vec{u} + 2\vec{v}\| > \|\vec{u}\|.$$

5. Suppose that f(x) is a continuous function on the interval $[-\pi, \pi]$ that has been measured in a laboratory. You have reason to believe that the function should be approximately equal to

some linear combination of sin(x) and cos(x). Using your experimental data, you compute the following integrals.

$$\int_{-\pi}^{\pi} f(x) \sin x \, dx = 7$$
$$\int_{-\pi}^{\pi} f(x) \cos x \, dx = 13$$

You may also use, without proof, the values of the following integrals.

$$\int_{-\pi}^{\pi} \sin^2 x \, dx = \pi$$
$$\int_{-\pi}^{\pi} \sin x \cos x \, dx = 0$$
$$\int_{-\pi}^{\pi} \cos^2 x \, dx = \pi$$

- (a) Let $V = \mathcal{C}^{(0)}[-\pi,\pi]$ denote the vector space of continuous functions on $[-\pi,\pi]$. Define an inner product on V, and identify each of the five integrals above as an inner product $\langle f,g \rangle$ of two elements f,g of V.
- (b) Suppose that we choose two constants c_1, c_2 and define a function g(x) as follows:

$$g(x) = c_1 \sin x + c_2 \cos x.$$

Find the values of c_1, c_2 that will ensure that $\int_{-\pi}^{\pi} (f(x) - g(x))^2 dx$ is as small as possible.

6. [9 points] Suppose that A is an $m \times n$ matrix, and $\vec{u}, \vec{v}, \vec{w}$ are three vectors in \mathbb{R}^n such that $\{A\vec{u}, A\vec{v}, A\vec{w}\}$ is a linearly independent set of vectors. Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is also a linearly independent set of vectors.