1. [9 points] Short answer questions. No explanations are necessary.
(a) State the dimension of each of the following vector spaces.

- \mathbb{R}^{5}
- $M_{2 \times 3}$
- \mathcal{P}_{3}
(b) Find the angle between the vectors $\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
(c) For each of the following subsets of \mathbb{R}^{2}, determine whether or not it is a subspace of \mathbb{R}^{2}. You do not need to prove your answer; simply state "yes" or "no."
- $\left\{\binom{x}{y}: x+5 y=0\right\}$
- $\left\{\binom{x}{y}: y=x^{2}\right\}$
- $\left\{\binom{x}{y}: 2 x+3 y=1\right\}$
- $\left\{\binom{x}{y}: y=7 x\right\}$

2. [9 points] Consider the two bases $B=\left\{\left[\begin{array}{c}0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ and $B^{\prime}=\left\{\left[\begin{array}{l}3 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ for \mathbb{R}^{2}. Find the change of basis matrix $[I]_{B}^{B^{\prime}}$.
3. [15 points] Consider the following three vectors in \mathbb{R}^{4}.

$$
\vec{u}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \quad \vec{v}=\left(\begin{array}{c}
-2 \\
2 \\
-2 \\
2
\end{array}\right) \quad \vec{w}=\left(\begin{array}{l}
0 \\
3 \\
0 \\
1
\end{array}\right)
$$

Denote by W the span of $\{\vec{u}, \vec{v}, \vec{w}\}$.
(a) Find a basis of W.
(b) What is the dimension of W ?
(c) Find an orthonormal basis for W. (Recall that a basis is called orthonormal if any two vectors in the basis are orthogonal, and each vector has norm equal to 1.)
(d) What element of W is closest to the vector $\vec{b}=\left(\begin{array}{c}12 \\ 0 \\ 0 \\ 0\end{array}\right)$?
(In other words, which element \vec{x} of W minimizes $\|\vec{x}-\vec{b}\|$?)
4. [9 points] Suppose that $\{\vec{u}, \vec{v}\}$ is a basis for a vector space V. Prove that $\{3 \vec{u}+2 \vec{v}, \vec{u}+\vec{v}\}$ is also a basis for V.
5. [9 points] Let $V=\mathcal{P}_{2}$ (polynomials of degree at most 2), and equip V with an inner product defined as follows.

$$
\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x
$$

(a) Compute $\|x\|$ (the norm of $x \in \mathcal{P}_{2}$, according to this inner product).
(b) Compute $\left\langle x, x^{2}+1\right\rangle$.
(c) Compute $\operatorname{proj}_{x}\left(x^{2}+1\right)$.
(d) The element $\operatorname{proj}_{x}\left(x^{2}+1\right)$ solves a minimization problem. Carefully state this problem (what is being minimized)?
6. [9 points] Consider the following three vectors.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

(a) Show that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set.
(b) In fact, B is a basis (you don't need to prove this). Find the coordianates of the following vector in basis B.

$$
\vec{v}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

