Least-squares Math 272, Spring 2018

Any typographical or other corrections about these notes are welcome.

1 Review of the dot product

The dot product on R™ is an operation that takes two vectors and returns a number. It is defined

by
n
U-U= E U;V;
=1

where uq, - -+ ,u, are the coordinates of #, and vq,--- ,v, are the coordinates of 7.
The dot product can be used to give a convenient formula for the length of a vector. We use
the notation ||7/]| to denote the length of a vector (also frequently called its “norm”). It is given by

the formula
|9 = Vv -7,

which is equivalent to the formula

||17H:\/v%+v%+---+v%-

The distance between two vectors can be expressed by ||2 — ¢]|. One of the convenient aspects
of the dot product is that it satisfied certain algebraic properties, such as commutatively and
distributivity. This makes it possible to “expand” the expression for the distance between two
vectors, for example:

lE—al* = (i-7)- (7~ 07)
= @ AT T-T AT
— A 20T+

This type of expansion will be crucial in the analysis that follows.

2 Statement of the least-squares problem, and examples

These notes are concerned with a process for solving the following problem.

The least-squares problem

Given a list of vectors {7, ,¥,} and an additional vector 5, what linear combination of
{1, , Uy} is closest to b? In other words, which values ¢y, - - , ¢, minimize the quantity
n
Z Cl"[_fi —b||?
i=1

The reason that this is called “least-squares problem” is that minimizing the quantity above is
the same as minimizing its square, which is the sum of the differences in the individual coordinates.
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Example: linear regression.

A typical problem in statistics is: if we are given a list of n data points
(x1,y1), (2,92), -+, (Tn,yn) in the plane, how can we fit a linear model to them? That
is, how can we find a line y = cix + co that passes as close as possible to these data points?
To solve such a problem, it is first necessary to decide how we judge which lines are better
fits than others; this depends on the application. In many applications, the line will be used
to predict a y coordinate, given an z coordinate. In such applications, what is crucial is to
make sure that the approximation errors (cjx; +ca — ;) tend to be as small as possible. One
very common way to measure how small these errors tend to be is to take the sum of their
squares. This quantity then functions as a sort of “score” for the quality of the fit (in this
game, lower scores are better; a score of 0 means a perfect fit).

n

score = Z(leﬂi + c9 — yi)2
i=1

The linear regression problem is: what values of ¢1, co should we choose to get the best score
(the best sum-of-squrared-error)? It turns out that we can view this as an example of the
least-squares problem. Indeed, define the following three vectors.

T 1 Y1
X9 = 1 Y2
Tn 1 Yn

Now, observe that the “score” above is precisely the squared length of 1@ + o1 — 7.
score = |1 @ + eo1 — 7|

Hence a solution to least-squares problem will allow us to find the best coefficients for a line
of best fit (according to this choice of “score.” What we are asking for, in essence, is: what
linear combination of Z and 1 is closest to 7

Example: projection

An example we considered earlier in class is projecting one vector onto another. Suppose
that we are given vectors ¥ and ¥, and wish to know: what scalar multiple of # is closest
to v7 We found, by a direct method, that the answer is given by the following projection
formula: o
- U

proj(?) = S i

IS

This is a special case of the least squares problem: we want to know which linear combination
of 4 (by itself) is closest to .

3 Matrix formulation

A second formulation of the least-squares problem is as follows.
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The least-squares problem, matrix formulation

Given a matrix A and a vector 5, what vector Z minimizes the quantity

|AZ — b||?

The reason this is equivalent to the first formulation is that the product of a matrix with a
vector is precisely the same thing as a linear combination of the columns of the matrix.

AT = xlfzfl +$2£2 + +$nx‘fn

Here, as usual, the symbol A; refers to the ith column of the matrix A, regarded as a vector.

4 Orthogonality and the Pythagorean theorem in n dimensions

One of the most powerful aspects of the dot product is that it products an extremely computa-
tionally efficient way to tell if two vectors are orthogonal (math jargon for “perpendicular;” I will
prefer the word “orthogonal” since it is the more common word in abstract settings, such as higher
dimensions).

We will call two vectors u, ¥ in R"™ orthogonal if 4 - ¥ = 0. We will sometimes also write 4 | ¥
to mean the same thing, in a slightly more visually suggestive way. That is,

© L U is synonymous with « -7 = 0.

The reason this corresponds to usual geometric notion of perpendicularity comes from the for-
mula
a-v=|d|-||v] - cosb
where 6 denotes the angle between « and v. This expression will be zero precisely when cosf = 0,
i.e. when § = T = 90° (there’s also one edge case: if either @ or ¥/ is the zero vector 0, then the dot
product is 0 even though there isn’t really a well-defined “angle” in sight. For convenience, we will
regard the zero vector 0 as being orthogonal to everything).

The algebraic properties of the dot product allow it to show the following n-dimensional version
of the pythagorean theorem.

Pythagorean theorem

If 4 and ¥ are two orthogonal vectors, then

1%+ 11* = llall® + [1]1*.

Proof. Using distributivity and commutativity of the dot product,

i +)* = (d+7)-(d+7)
= U U+u-7+7-4u+0-0
= W-U+T-U (sinced-v=0)
= Jlal* + |lall*.

O]
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An easy-to-obtain consequence of this is surprisingly powerful. The following corollary can be
interpreted geometrically as saying: the hypotenuse of a right triangle is always longer than either
leg.

If @ L ¢ and @ # 0, then ||@ + @] > ||@]|.

Proof. These are both positive numbers, so its enough to show that ||@ + #]|*> > |l@||?>. The
Pythagorean theorem shows that this is true as long as ||7]|2 > 0, which it is as long as 7 # 0. O

5 The key theorem

The geometric insight needed to solve least-squares is the following: if we think we’ve found the
very best linear combination ¢ of {¢,--- ,7,} (best in the sense that it is as close as possible to
the target vector 5), how could we check that it really is the best? One option is to “tweak” it
a bit, by adding a small multiple of vy, s, -+, or ¥,. If we've located v correctly, then any such
tweak should only move us further away from b. For example, if we start at ¢ and start adding
small multiples of 7, we’ll start traveling in a straight line that should take us further away from
b. And similarly, since we could subtract as well, traveling backwards on this line should also move
us further away. If you try to picture this, you can convince yourself that this is only possible if
the line sits at a right angle with the vector from @ to b. So it should be the case that (b— @) L 7.
And we could say that same thing from ¥ through ,.

(In a later version of these notes, I may try to produce a visual aid for the thought process
above, as drawn in class.)

So this gives us something to work with: the best choice of ¥ should ensure these n orthogonality
conditions. Lucky for us, these n conditions turn out to be all we need. This is expressed in the
following theorem.

Theorem

Let {#,---,9,} be a list of vectors, and b another vector.
Suppose that ¥ is a linear combination of {¥1,--- ,¥,}, that satisfies the following n condi-
tions.

@T—-b) L @

(T—b) L o

Then for any other linear combination @ of {v}, -+ ,¥,},
[|@ = bl| > |7 — b]|.

In other words, 7 is the linear combination of {@, --- ,¥,} that comes closest to b.
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The proof doesn’t take too much space on the page, and is completely algebraic, but it’s a little
hard to come up with without some geometric insight. In this case, the key insight is: once we
know that o—b is orthogonal to all of the ¥;, it must in fact be orthogonal to any linear combination
of them. So the difference W — ¥ is orthogonal to ¥ — b. But this means that they form two legs of
a right triangle, so their sum is longer than either one of them. Their sum is precisely W — b. Here
is the proof, written out more formally.

Proof. We have assumed that ¢ and @ are linear combinations of {¥1,---,¥,}. So there exists
constants cq,co, -+ , ¢y and dy,ds, - - - ,d, such that
n
7 = ZCZ’L_);
i=1
m
u_j =

E d;v;.
i=1

Now, observe that
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= Y i-e) [5i (@-D)
=1
= ) (di—¢)-0 (since & L (5—1b))
=1

So (W — ¥) L (U —10b). By the Corollary to the Pythagorean theorem in the previous section, it
follows that

(& — T) + (T —b)|| > ||&— ],

—

which is the same (after canceling the 7is) as ||@ — b|| > ||T — b||, as desired. O

6 The normal equation

The theorem in the previous section shows that, to solve the least-square problem, it’s enough to
make sure that a bunch of perpendicularity statements are true. In other words, we need to make
sure that a bunch of dot products are 0. Let’s pin down what these dot products should be.

We're trying to find a linear combination ¥ of {#},--- ,4,}, so in other words we're trying to
find n coefficients cq, - - - ¢,, where we will set

U=c101 + 202 + - - - + ¢ Up.

The dot products we need to get to be 0 are as follows.

-,

—b) =
—b) =

U1 - (c1U1 + catip + -+ - + cpty

Vg (61171 + coUsy + -+ + CpUp

-,

Up - (C1U1] + colp + -+ +cpUp —b) = 0

page 5 of



Least-squares Math 272, Spring 2018

The wonderful thing here is that this is a linear system of equations! Indeed, after a few algebra

steps, these equations become

The linear system that solves least squares

Given a list of vectors {¢,---,7,} and a target vector l;, the linear combination of
{71, ,7,} that comes nearest to b is U = c10] + caUy + - -+ + ¢pUp, wWhere ¢, -+ , ¢, are
obtained as any solution to the following system of linear equations.

(U1 - th)er + (U1 - Va)eg + -+ -+ (V1 - Up)en, = U1-b

(Vg - T1)er + (Vo - Vo)ea + -+ -+ (Vo - V), = Ua-b

(Un . 171)01 4F (ﬁn : 172)C2 qF e oo qF (ﬁn : ﬁn)cn = ﬁn )

.

This system of equations is the answer to our original problem. Its solutionsﬂ give the solution

to the least squares problem.
There’s a few other ways that write the normal equation that may be useful in different contexts.

For example, here’s how we’d write it as a matrix equation. When written as a single matrix
equation, this system is called the normal equation.

The normal equation, in terms of a list of vectors

Given a list of vectors {¢1,---,7,} and a target vector b, the linear combination of
{U1,--- ,7,} that comes nearest to b is U = cjv] + caUy + - -+ + ¢p¥y, Where ¢, -+ , ¢, are
obtained as any solution to the following matrix equation.

U1 - U1 Up - Uo U1 - Uy, c1 U1 - b

() _’1 172 (%) 172 . ’L7n Co 172 b

Up V1 Up- V2 -+ Up-Up Cn ﬁnb

Finally, we note that the normal equation has a particularly compact form when the least-squares

problem is posed in matrix form.

The normal equation, in terms of a matrix

If AT=bisa possibly inconsistent linear system, then a least-squares solution is a solution
to the equation

At Az = Ab.
This equation is always consistent. Its solution(s) have the property that they achieve the
minimum possible value of ||AZ — b|, i.e. they come as close as possible to being solutions

of the original system.

LA point I have brushed under the rug in this discussion: we’ve proved that if the normal equation has a solution,
then that solution solves the least-squares problem. But I haven’t proved that there is a solution, i.e. that the linear
system is consistent. Don’t worry, it is; but I don’t know of a proof that would be particularly illuminating this early
in the course, before we have some of the machinery from later chapters of the book.
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This form of the normal equation follows from the previous one, because the entires of A'A are
simply all possible dot products of columns of A, while the entries of A'h are the dot products of
each column of A with b.

7 Examples

Finding a closest combination

5 0 1
What linear combination of v7 = [ 3] and U5 = | 1 | is closest to the vector b=|1]2
2 -1 1

Solution: The best combination will be ¢ + cav3, where c1, ¢y are solutions to the normal
equation, which is the following in this case.

171'171 ’171-172 C1 o ’1715
Up-th o) \c2) — \by-b
38 1\ [ _ (10
1 2 C2 - 0

Since this is a 2 x 2 system, and the matrix has nonzero determinant 38 -2 —1-1 =75, a
quick way to solve it is with the formula for the inverse of a 2 x 2 matrix.

() -G )
B 38-21—1-1<—21 ;81> <100>
- 5 (%)
- (%)

Hence the closest linear combination is

5 0 4/3
4 2
A 64 I O e A
2 -1 2/3
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Approximately solving an inconsistent linear system

Define a matrix A and vector b as follows.

0 3 . 3
A=11 1 b=10
-2 0 1

The system AZ = b is inconsistent (you can check this using row-reduction). Make the best
of this situation by finding the vector Z so that AZ gets as close as possible to b (in other
words, Z should minimize |AZ — b]|).

Solution: We can solve the normal equation A'AZ = A'b, as follows.

<o1_z>(1’ j,_(01—2)3
31 0 9 0 31 0 1
5 1Y\,  [-2
1 10)° = \9
This can be solved with a bit of row-reduction (we could also use the formula for inverting
a 2 X 2 matrix, as in the previous example; I'll row-reduce here for variety).

5 1 |-2 1 10] 9 1 10| 9 1 10| 9
(1 109> <5 1-2) (0—49—47) (0 147/49)‘>
(1 0 ‘;79(’>_<1 029/49>

0 1| 47/49 )=\ 0 1| 47/49

So the best possible choice of ¥ is

_ w

8
I

()

page 8 of



Least-squares Math 272, Spring 2018

Linear regression, solved

As we saw in Section 2, we can find a line of best fit y = c;z + ¢2 (in the sense of the “score”
in that example) for some data points (z1,41), (2,%2), - , (Zn, yn) by looking for the values
of ¢1,co that minimize ||c1Z + el — ]|, there & is all of the = values in a vector, T is the
all-1’s vector, and ¥ is all of the y values in a vector.

According to the normal equation, we can solve this problem by solving the matrix equation

-7 &1\ (a) _ (T-§
Tz 1-T)\a)  \U-7

This is a 2 x 2 linear system, and can be solved quite efficiently by using the formula for the
inverse of a 2 X 2 matrix.
This same matrix equation can also be written A?A¢ = Aly, where

8 8

T 1

T2 1
A= . )

Ty 1

the matrix whose columns are £ and 1.

Projection revisited

Suppose we want the scalar multiple of @ that is closest to ¢. This is the simplest possible
case of hte normal equation: the matrix is just 1 x 1! The best multiple is ci, where ¢ solves
the normal equation, which in this case is:

We have simply recovered the formula for the projection of ¢ onto .

8 Appendix: deriving the normal equation from calculus

This appendix described another way to find the normal equation. I won’t mention this in class,
and the treatment will leave out some details, but it may be of interest to some of you.

There are many other ways to derive the normal equation A'AZ = A'b from the problem of
minimizing | AZ — b||. One is to apply calculus: one way to optimize a differentiable function of
several variables is to set all of its partial derivatives equal to 0 (of course, setting all derivatives
equal to 0 doesn’t guarantee that what is found is a minimum rather than a maximum, a saddle,
or another type of critical point, but let’s not worry about this for now).

To begin, let’s writing out the square of the quantity being optimized, in terms of dot products.
The reason to take the square is that it the minimum will occur for the same choice of Z, and we
can avoid writing square roots in our formulas.

-, —,

) (AZ — b)
AZ) — 2(AZ) - b+b-b

=

|AZ —b|]> = (A7 -
= (A%)-

—~
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Now, lets take the partial derivative 8%2_ of this expression (there’s one partial derivative for each
i, for n total). We need two facts, which I'll state without proof (it is worth thinking through why
these are true):

1. The product rule is valid for dot products of vector-valued functions:
O (2 =) _ [0 7. o P 0 .
o (7 3@) = (7@ ) -t + @) (1)
2. The partial derivatives of AZ are just the columns of A:

o . =
oz, (AZ) = A;

From these two facts, we can compute (using that b is constant):

0
8:@

. 9

. . . 9 - -
|AZ — b2 = A (AZ)+ (AZ) - A; — 24; - b — (AT) -

(b-5)

b
8.%‘1' + a%z
= 24;- (AT)—24;-b

—

— 94, (Af—5>

From these, we see that, in order for all the partial derivatives to vanish, AZ — b must have dot
product 0 with all the columns of A. This amounts to saying that A*(AZ—b) = 0, which rearranges
to the normal equation A'Ax = A’b.

Comment: A somewhat slicker way to carry out the calculus above is to work will all n partial
derivatives at once, by taking the gradient of the expression. To do this requires laying some
groundwork about gradients of vector-valued functions. One source I recommend (which is where
I originally learned how to use techniques like least-squares in practice) is Andrew Ng’s lecture
notes on machine learning. Linear regression and the normal equation are discussed (in terms of
gradients) in this set of notes:

http://cs229.stanford.edu/notes/cs229-notesl.pdf

Those notes also give a useful probabilistic interpretation of least-squares. There’s a fair amount
of other material you’d need to read a bit about to follow all the details in these notes, but it is
worth the effort. I am happy to chat about them at office hours.
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