Study guide

- (§1.5) Terminology: homogeneous linear system, trivial solution.
- (§1.5) Once you know that $A \vec{x}=\vec{b}$ has one solution, you can find all of the other solutions by solving the homogeneous equation $A \vec{x}=\overrightarrow{0}$. Understand why this is.
- (§1.6) Determinants, interpreted as area/volume expansion factor.
- (§1.6) Techniques to evaluate determinants: formulas for 2×2 and 3×3 cases; row-reduction; cofactor expansion.
- (§2.1 and 2.2) Know the definition of "linear combination," and visual interpretation.
- (§2.2) How can you tell whether a particular vector is a linear combination of some other vectors? How can you desribe the set of all vectors that can be written as a linear combination of a specific set of vectors?
- (§2.2) Understand how to interpret a matrix equation $A \vec{x}=\vec{b}$ in terms of linear combinations of the columns of A.

Textbook problems

- §1.5: 26, 28
- §1.6: 10, 22, 26, 52 (hint for 52 : use the result of supplementary problem 2. You may also use the fact tthat $\operatorname{det} A=\operatorname{det} A^{t}$.)
- $\S 2.1: 18,30$
- §2.2: 2, 12, 32, 33, 38

Supplemental problems:

1. Suppose that A is a square matrix.
(a) Prove that if A has a column consisting entirely of 0 s , then $\operatorname{det} A=0$.
(b) Prove that if two rows of A are identical, then $\operatorname{det} A=0$.
2. Suppose that A is an $n \times n$ matrix and c is a consant. Prove that

$$
\operatorname{det}(c \cdot A)=c^{n} \operatorname{det} A
$$

