

MATH 272 MIDTERM 2 FALL 2017

NAME: Solutions

Read This First!

- You are allowed one page of notes, front and back. No other books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.
- Please read each question carefully. Show **ALL** work clearly in the space provided. You may use the backs of pages for additional work space.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.

Grading - For Instructor Use Only

Question:	1	2	3	4	5	6	Total
Points:	9	9	9	9	9	9	54
Score:							

- 1. Short answer questions. No explanations are necessary.
 - (a) [3 points] Give a basis for each of the following vector spaces.

$$\begin{array}{c}
\cdot \mathbb{R}^3 \\
\left\{ \begin{bmatrix} i \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ i \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}
\end{array}$$

• $M_{2\times 2}$ (the space of 2×2 matrices)

• \mathcal{P}_2 (the space of polynomials of degree at most 2)

$$\{1, \times, \times^2\}$$

(b) [3 points] Suppose that B and B' are two bases for a vector space V, and the change of basis matrix is

$$[I]_B^{B'} = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}.$$

Let $\vec{v} \in V$ be a vector such that $[\vec{v}]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Determine $[\vec{v}]_{B'}$.

$$\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$$

(c) [3 points] Suppose that $T: \mathbb{R}^5 \to \mathbb{R}^3$ is a linear transformation, and that T is surjective (onto). Determine dim N(T) (where N(T) denotes the null space of T).

$$R(T) = \mathbb{R}^{3}$$

$$\Rightarrow \dim N(T) = \dim \mathbb{R}^{5} - \dim \mathbb{R}^{3}$$

$$= \boxed{2}$$

2. [9 points] Consider the following three vectors.

$$ec{v}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad ec{v}_2 = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \qquad ec{v}_3 = egin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

(a) Show that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent.

now-reduce.

Note: this was self-check moblem 2.3.23.

Pivotin each column => solins to $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \vec{x} = \vec{0}$ have no free variables => columns are lin. indep.

(b) Find the unique scalars c_1, c_2, c_3 such that the vector

$$\vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

is equal to $c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3$.

same nowops., but ul the aug. matrix:

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}.$$

$$q = 0$$
, $c_2 = -1$, $c_3 = 3$

3. [9 points] Consider the two bases $B = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ and $B' = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ for \mathbb{R}^2 . Find the change of basis matrix $[I]_B^{B'}$.

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 3 \\ 0 & -2 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$SO \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$SO \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$

$$SO \begin{bmatrix} 3 \\ 3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$

- 4. [9 points] Let $T: V \to V$ be a linear tranformation.
 - (a) Prove that $T(\vec{0}) = \vec{0}$.

Here are two possible moofs:

proof 1

$$\forall \vec{v} \in V$$
, $T(0 \cdot \vec{v}) = 0 \cdot T(\vec{v})$ (lineauty)

but $0 \cdot \vec{u} = \vec{0}$ for any vector \vec{u} . So

this means

 $T(\vec{0}) = \vec{0}$.

proof 2

Observe that

$$T(\vec{0}) = T(\vec{0} + \vec{0})$$

 $= T(\vec{0}) + T(\vec{0})$. (linearity)
 $= T(\vec{0}) + T(\vec{0}) - T(\vec{0})$
 $= T(\vec{0}) + T(\vec{0}) - T(\vec{0})$
 $= T(\vec{0})$.

(b) Suppose that $\vec{u}, \vec{v}, \vec{w}$ are three vectors in V, and that the three vectors $T(\vec{u}), T(\vec{v}), T(\vec{w})$ are linearly independent. Prove that the three vectors $\vec{u}, \vec{v}, \vec{w}$ are linearly independent.

Suppose that ci, Cz, Cz are comtants st.

$$C.\vec{u} + C_2\vec{V} + C_3\vec{w} = \vec{0}$$
.

We wish to show that c,= Cz=Cz=0.

Apply T to both sides:

$$T(C_1\vec{u} + C_2\vec{v} + C_3\vec{w}) = T(\vec{0})$$

$$=> c_1 T(\vec{a}) + c_2 T(\vec{v}) + c_3 T(\vec{w}) = \vec{0}.$$
(by lineanity) (by part a)

Since T(v), T(v), T(w) are linearly independent, it follows that

$$C_1 = C_2 = C_3 = 0$$

as desired.

5. [9 points] Consider the following matrix.

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

(a) Find a basis for the column space of A.

now-reduce:

(b) Find a basis for the null space of A

the solin to AX=0 is given by this aug. matrix in RREF:

$$\begin{bmatrix}
1 & 2 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\Rightarrow
\begin{cases}
x_1, x_4 & \text{free} \\
\text{gen'l sol'n is} \\
x_1 = -2t + s \\
x_2 = t \\
x_3 = -s \\
x_4 = s
\end{cases}$$

$$\begin{pmatrix} -2t+s \\ -s \\ s \end{pmatrix} = t \cdot \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$
so
$$\left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$$
 is a basis for N(A).

6. Consider the square in the plane with vertices (0,0), (1,0), (0,1), (1,1).

(a) [3 points] Find the matrix representation (relative to the standard basis) of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that transforms the square to the figure shown.

$$T(\frac{1}{6}) = (\frac{1}{2}) \quad \& \quad T(\frac{0}{1}) = (\frac{0}{1})$$

$$A = \left[\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \right]$$

(b) [3 points] Draw on the axes below the result of transforming the square by the transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$ represented (in the standard basis) by $\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}$.

(c) [3 points] Determine the matrix representation (in the standard basis) for the transformation $S \circ T$ (the composition of S and T, where S is the transformation in (b) and T is the transformation in (a)).

$$\begin{bmatrix}
-3 & 0 \\
0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 & 0 \\
-2 & 1
\end{bmatrix} = \begin{bmatrix}
-3 & 0 \\
-2 & 1
\end{bmatrix}$$

$$\frac{1}{1} \cdot \begin{bmatrix}
-3 & 0 \\
-2 & 1
\end{bmatrix}$$

$$\frac{1}{2} \cdot \begin{bmatrix}
-3 & 0 \\
-2 & 1
\end{bmatrix}$$