

MATH 272

MIDTERM 2

Spring 2018

NAME: Solutions

Read This First!

- You are allowed one page of notes, front and back. No other books, notes, calculators, cell phones, communication devices of any sort, webpages, or other aids are permitted.
- Please read each question carefully. Show **ALL** work clearly in the space provided. There is an extra page at the back for additional scratchwork.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.

Grading - For Instructor Use Only

Question:	1	2	3	4	5	6	Total
Points:	9	9	15	9	9	9	60
Score:							

Math 272 Midterm 2

- 1. [9 points] Short answer questions. No explanations are necessary.
 - (a) State the dimension of each of the following vector spaces.
 - R⁵
 - M_{2×3}
 - P₃ 4

(b) Find the angle between the vectors $\begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$.

- (c) For each of the following subsets of \mathbb{R}^2 , determine whether or not it is a subspace of \mathbb{R}^2 . You do not need to prove your answer; simply state "yes" or "no."
 - $\bullet \ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \ x + 5y = 0 \right\}$
 - $\bullet \ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \ y = x^2 \right\}$
 - $\bullet \ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \ 2x + 3y = 1 \right\} \qquad \text{ND}$
 - $\bullet \ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : \ y = 7x \right\}$

2. [9 points] Consider the two bases $B = \left\{ \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and $B' = \left\{ \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ for \mathbb{R}^2 . Find the change of basis matrix $[I]_B^{B'}$.

$$\begin{pmatrix} 3 & 1 & | & 0 \\ 5 & 2 & | & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 1 & | & 6 \\ 0 & 1/3 & | & -1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & -3 \end{pmatrix}$$
So
$$\begin{bmatrix} \binom{0}{-1} \end{bmatrix}_{B'} = \binom{1}{-3}.$$
Also,
$$\begin{bmatrix} \binom{1}{2} \end{bmatrix}_{B'} = \binom{0}{1}$$
by inspection (it matches the second vector of B').

Hence
$$\begin{bmatrix} T \end{bmatrix}_{B}^{B'} = \binom{1}{-3} \quad 1$$

3. [15 points] Consider the following three vectors in \mathbb{R}^4 .

$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \qquad \qquad \vec{v} = \begin{pmatrix} -2 \\ 2 \\ -2 \\ 2 \end{pmatrix} \qquad \qquad \vec{w} = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$

Denote by W the span of $\{\vec{u}, \vec{v}, \vec{w}\}.$

(a) Find a basis of W.

$$\begin{pmatrix} 1 & -2 & 0 \\ -1 & 2 & 3 \\ 1 & -2 & 0 \\ -1 & 2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

pivots in columns 183 \Rightarrow [\vec{u}, \vec{w}] is a basis of W.

(b) What is the dimension of W?

(the basis has 2 elements).

(c) Find an orthonormal basis for W. (Recall that a basis is called orthonormal if any two vectors in the basis are orthogonal, and each vector has norm equal to 1.)

First, the replace u, w by orthogonal vectors:

$$\vec{u} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$\vec{w} - \text{proj}\vec{u}(\vec{w}) = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} - \frac{\vec{u} \cdot \vec{w}}{\vec{u} \cdot \vec{u}} \cdot \vec{u} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} - \frac{-4}{4} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

Then nomelize:

$$\frac{1}{\sqrt{1+|z|}}\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{pmatrix}$$

$$\frac{1}{\sqrt{1+|z|+1+0}}\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \\ 0 \end{pmatrix}$$

$$\frac{1}{\sqrt{1+|z|+1+0}}\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \\ 0 \end{pmatrix}$$

$$\left\{
\begin{pmatrix}
1/2 \\
-1/2 \\
1/2 \\
-1/2
\end{pmatrix},
\begin{pmatrix}
1/\sqrt{6} \\
2/\sqrt{6} \\
1/\sqrt{6} \\
0
\end{pmatrix}
\right\}$$

(d) What element of W is closest to the vector $\vec{b} = \begin{pmatrix} 12\\0\\0 \end{pmatrix}$? (In other words, which element \vec{x}

of W minimizes $\|\vec{x} - \vec{b}\|$?)

To minimize ||C, " + C, " - 6 ||, we can solve the normal egin:

$$\begin{pmatrix}
\vec{u} \cdot \vec{u} & \vec{u} \cdot \vec{w} \\
\vec{w} \cdot \vec{u} & \vec{w} \cdot \vec{w}
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2
\end{pmatrix} = \begin{pmatrix}
\vec{u} \cdot \vec{b} \\
\vec{w} \cdot \vec{b}
\end{pmatrix}$$

$$\begin{pmatrix}
4 & -4 \\
-4 & 10
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2
\end{pmatrix} = \begin{pmatrix}
17 \\
C_3
\end{pmatrix}$$

$$\begin{pmatrix}
4 & -4 & | 17 \\
-4 & 10 & 0
\end{pmatrix}
\longrightarrow \begin{pmatrix}
41 & -1 & | 3 \\
0 & 6 & | 12
\end{pmatrix}
\longrightarrow \begin{pmatrix}
1 & 0 & | 5 \\
0 & 1 & | 7
\end{pmatrix}$$
So the closest point is $5\vec{u} + 2\vec{w} = 5\begin{pmatrix} -1 \\ -1 \end{pmatrix} + 2\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$

Another method: add the projections of 5 onto the ortho. vectors from (c).

4. [9 points] Suppose that $\{\vec{u}, \vec{v}\}$ is a basis for a vector space V. Prove that $\{3\vec{u} + 2\vec{v}, \vec{u} + \vec{v}\}$ is also a basis for V.

Linear independence

Suppose
$$C_{i}(3\bar{u}+2\bar{v})+C_{i}(\bar{u}+\bar{v})=\bar{0}$$
.
Then $(3C_{i}+C_{i})\bar{u}+(2C_{i}+C_{i})\bar{v}=0$.
Since \bar{u},\bar{v} are LI, it follows that $3C_{i}+C_{i}=0$ & $2C_{i}+C_{i}=0$,
Te. $\left(\frac{3}{2}\right)\left(\frac{1}{C_{i}}\right)=\left(\frac{0}{0}\right)$. Reducing, $\left(\frac{3}{2}\right)\left(\frac{0}{0}\right)-\left(\frac{0}{0}\right)\left(\frac{0}{0}\right)$, so the only possible values of C_{i} are $C_{i}=0$, $C_{i}=0$.
Hence $\left(3\bar{u}+2v,\bar{u}+\bar{v}\right)$ is LI.

Span

Hence [3 ū+2 v, ū+v] is a basis for v.

Note Another way to check that the set spans: obscure that $\vec{u} = \frac{1}{3u+2\vec{v}} - 2(\vec{u}+\vec{v})$ $\vec{v} = -1(3\vec{u}+2\vec{v}) + 3(\vec{u}+\vec{v})$ Hence $\vec{u}_{i}\vec{v} = span \left\{ 3\vec{u}+2\vec{v}, \vec{u}+\vec{v} \right\},$ and therefore all of V lies in this span, since $\{\vec{u}_{i},\vec{v}\}$ spans V.

5. [9 points] Consider the vector space C[0,1] of continuous functions on the interval [0,1]. Regard this as an inner product space, with the following inner product.

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \ dx$$

You measure a function f(x) in the laboratory, whose graph appears to be well-approximated by a straight line. Using the experimental data, you compute the following integrals.

$$\int_0^1 f(x) dx = 6 = \langle 1, f \rangle$$

$$\int_0^1 x f(x) dx = 5 = \langle x, f \rangle$$

Determine the constants c_1, c_2 such that $\int_0^1 (c_1 + c_2 x - f(x))^2 dx$ will be minimized (so that $y = c_1 + c_2 x$ will approximate f(x) as well as possible, in total-squared-error sense).

It suffies to ensure that

$$1 \perp (c_1 + c_2 \times - f(x))$$

$$8 \times \perp (c_1 + c_2 \times - f(x))$$

Note 1 8x are not onthogonal, so it is not enough to project onto 18x.

This amounts to the linear system:

$$\begin{pmatrix} \langle 1,1 \rangle & \langle 1,\times \rangle \\ \langle x,1 \rangle & \langle x,\times \rangle \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \langle 1,f \rangle \\ \langle x,f \rangle \end{pmatrix}$$

so the system is

$$\begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1/2 & | & 6 \\ 1/2 & 1/3 & | & 5 \\ -1/4 & -1/4 & | & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1/2 & | & 6 \\ 0 & 1/12 & | & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & -6 \\ 0 & 1 & | & 24 \end{pmatrix}$$

& the but constants are
$$[c_1=-6 \quad c_2=24]$$
. (the approximating function is $-6+24x$)

6. [9 points] Suppose that a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is used to draw a three-dimensional scene on a page. A point $\vec{x} \in \mathbb{R}^3$ will be drawn at the location $T(\vec{x})$ on the page (which is identified with \mathbb{R}^2 by some choice of coordinates).

Suppose that the following three equations hold.

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-4/5\\3/5\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$

In other words, the location $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ in the scene is drawn at location $\begin{bmatrix} 1\\0 \end{bmatrix}$ on the page, the location

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ in the scene is drawn at location $\begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix}$ on the page, and the location $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ in the scene is drawn at location $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ on the page.

(a) Suppose that one corner of a structure in the scene is located at the coordinates $\begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$. Where on the page should it be drawn?

$$T\left(\begin{pmatrix} \frac{3}{5} \end{pmatrix}\right) = 3T\left(\begin{pmatrix} \frac{1}{0} \end{pmatrix}\right) + 5T\left(\begin{pmatrix} \frac{1}{0} \end{pmatrix}\right) + 1 \cdot T\left(\begin{pmatrix} \frac{0}{0} \end{pmatrix}\right)$$

$$= 3\begin{pmatrix} \frac{1}{0} \end{pmatrix} + 5\begin{pmatrix} -\frac{4}{15} \end{pmatrix} + 1 \cdot \begin{pmatrix} \frac{0}{1} \end{pmatrix}$$

$$= \begin{pmatrix} 3 - 4 + 0 \\ 6 + 3 + 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

(b) Find a matrix A such that $T(\vec{v}) = A\vec{v}$ (this matrix A is called the matrix representation of T).

$$A = \begin{pmatrix} 1 & -415 & 0 \\ 0 & 315 & 1 \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$img_{\mathcal{K}} \qquad imag_{\mathcal{K}} \qquad imag_{\mathcal{K}}$$

$$\vec{e}_{1} \qquad \vec{e}_{2} \qquad \vec{e}_{3}$$

(part (c) on reverse side)

For convenience, the three equations from the previous page are reproduced here:

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-4/5\\3/5\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$$

(c) Determine a basis for the nullspace N(T) of T. What is its dimension?