NOTE (2025): some material on this exam is content we haven't covered yet. See notes in blue about this.

- 1. [9 points] Short answer questions (no explanation or shown work is necessary for these questions)
 - (a) Suppose that \vec{u}, \vec{v} are vectors in \mathbb{R}^n , such that the following three inner products hold. $\vec{u} \cdot \vec{u} = 7$, $\vec{u} \cdot \vec{v} = 2$, $\vec{v} \cdot \vec{v} = 5$.

Determine the norm $\|\vec{u} + \vec{v}\|$.

- (b) Suppose that $B = \left\{ \begin{pmatrix} 5\\1 \end{pmatrix}, \begin{pmatrix} 3\\7 \end{pmatrix} \right\}$. This is a basis of \mathbb{R}^2 . Let S denote the standard basis of \mathbb{R}^2 . What is the change of basis matrix $[I]_B^S$?
- (c) Consider the following basis for \mathcal{P}_2 : $B = \{x + 1, x 1, x^2\}$. Determine the coordinate vector $[x^2 + x + 1]_B$.
- 2. [9 points] Consider the following two bases of \mathbb{R}^3 (you do not need to prove that these are bases).

$$B = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
$$B' = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\5\\7 \end{pmatrix}, \begin{pmatrix} 1\\5\\6 \end{pmatrix} \right\}$$

Determine the change of basis matrix $[I]_B^{B'}$.

3. [9 points] Let W denote the set of solutions $\vec{x} \in \mathbb{R}^4$ to the following matrix equation.

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 2 & 3 & 9 & 5 \end{pmatrix} \vec{x} = \vec{0}$$

- (a) Prove that W is a subspace of \mathbb{R}^4 .
- (b) Find a *basis* for W.
- (c) Determine the dimension of W.

(d) Find the vector
$$\vec{w}$$
 in W that is closest to the vector $\vec{b} = \begin{pmatrix} 2 \\ 0 \\ 4 \\ -1 \end{pmatrix}$

- 4. [9 points] Suppose that A is an invertible $n \times n$ matrix, and $\{\vec{u}, \vec{v}, \vec{w}\}$ is a linearly independent set in \mathbb{R}^n . Prove that $\{A\vec{u}, A\vec{v}, A\vec{w}\}$ is also a linearly independent set.
- 5. [9 points] Later material; can omit. Consider the vector space C[-1, 1] of continuous functions on [-1, 1], equipped with the following inner product.

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) \, dx$$

Spring 2019

- (a) Show that, under this inner product, $1 \perp x$ (here 1 denotes the constant function f(x) = 1, while x denotes the function g(x) = x).
- (b) In the laboratory, you measure a function f(x) on [-1,1], whose graph is shown below.

Based on the graph, you suspect that this function is approximately equal to a function of the form $g(x) = c_1 x + c_2$. In order to find a good fit, you compute the following two integrals using your numerical data.

$$\int_{-1}^{1} f(x) \, dx = 0.2 \qquad \qquad \int_{-1}^{1} x f(x) \, dx = 0.4$$

Using these computations, compute the following two projections (in the inner product space described above):

 $\operatorname{proj}_1 f(x), \quad \operatorname{proj}_x f(x).$

(As we discussed in class, the fact that $1 \perp x$ means that the sum $\operatorname{proj}_1 f(x)$, $+\operatorname{proj}_x f(x)$ is the linear combination of 1 and x that best approximates f(x). You can use this, plus the graph, to check your answers.)