Study guide

- (§1.5) Terminology: homogeneous linear system, trivial solution.
- (§1.5) Once you know that $A\vec{x} = \vec{b}$ has one solution, you can find all of the other solutions by solving the homogeneous equation $A\vec{x} = \vec{0}$. Understand why this is.
- $(\S1.6)$ Determinants, interpreted as area/volume expansion factor.
- (§1.6) Techniques to evaluate determinants: formula for 2×2 case; row-reduction; cofactor expansion.
- 1. (Textbook 1.5.26)

Let $A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & -4 & 8 \\ 3 & -6 & 12 \end{bmatrix}$ Find a nontrivial solution to $A\vec{x} = \vec{0}$. (Terminology note: a "non-

trivial solution" to a homogeneous matrix equation is the same as a nonzero solution.)

2. (Textbook 1.5.28)

Find a nonzero
$$3 \times 3$$
 matrix A such that the vector $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ is a solution to $A\vec{x} = \vec{0}$

- ♣ 3. This problem is meant to illustrate why, in the definition of *inverse matrix*, we include both conditions $AA^{-1} = I$ and $A^{-1}A = I$. Namely, it is possible to have one but not the other.
 - (a) (This part is not a proof; it's enough to find an example and just write it down) Find a 2×3 matrix A and a 3×2 matrix B such that AB = I. Check that $BA \neq I$. (How did I know this is true, no matter what you chose? I am not a mind-reader, but the answer will have to wait a bit.)
 - (b) Suppose A is an $m \times n$ matrix and B is an $n \times m$ matrix such that AB = I (your example from part (a) is one such pair, but your proof should work for any such pair). Prove that for any matrix equation $A\vec{x} = \vec{b}$, the vector $\vec{x} = B\vec{b}$ is a solution. That is, we have this implication:

$$A\vec{x} = \vec{b} \quad \Leftarrow \quad \vec{x} = B\vec{b}.$$

(Recall that B were an *inverse*, we'd also have the converse implication, as we've seen in class.)

- (c) Now consider again the *specific* matrices A, B you found in part (a), and choose any vector $\vec{b} \in \mathbb{R}^2$ you like. Show that although $B\vec{b}$ is a solution to $A\vec{x} = \vec{b}$ (thanks to part (b)), it is not the only solution. So the converse implication in part (b) is false.
- (d) Now suppose that A is a $m \times n$ matrix and B is an $n \times m$ matrix, and assume that BA = I (note that this is the opposite multiplication order to the one we've been talking about so far!). Prove that for any matrix equation $A\vec{x} = \vec{b}$, the vector $\vec{x} = B\vec{b}$ is the only possible solution. That is, we have this implication:

$$A\vec{x} = \vec{b} \quad \Rightarrow \quad \vec{x} = B\vec{b}.$$

(Again, though, the converse is false: it's possible that there is *no solution*. Make sure you understand why this doesn't contradict what you just proved; it is a subtle logical point! I encourage you to construct a specific example to see this, but you do not need to write it down to submit with this assignment.)

4. Let A be an $n \times n$ matrix, and let B = A - 7I (where I is the $n \times n$ identity matrix). Prove that the following two sets are equal:

$$\{\vec{v} \in \mathbb{R}^n : A\vec{v} = 7\vec{v}\} = \{\vec{v} \in \mathbb{R}^n : B\vec{v} = \vec{0}\}.$$

(Please ask me or one of the course staff about any of this notation if it is new to you! We've used it a bit in class, but it takes some getting used to when you are new to it.)

5. (Textbook 1.6.10)

	-1	1	1	2	
Answer the following questions about the matrix $A =$	3	-2	0	-1	
	0	1	0	1	
	3	3	3	3	

- (a) Find the determinant of the matrix by using an expansion along row 4.
- (b) Find the determinant of the matrix by using an expansion along row 3.
- (c) Find the determinant of the matrix by using an expansion along column 2.
- (d) In (a), (b), and (c), which computation do you prefer, and why?
- (e) Does the matrix A have an inverse? Do not try to compute the inverse.
- 6. (Textbook 1.6.22 and 1.6.26)

Determine the following determinants. Decide whether the matrix is invertible, without attempting to compute its inverse.

								1	0	-1	0	-1]
	1	2	4]				-1	-1	0	0	-1
a) det	4	0	0				b) det	1	0	0	0	-1
a) det	1	2	4					0	1	1	1	0
	-		-	-			b) det	$\lfloor -1$	1	1	-1	0