Study guide

- (§2.3) Know and understand the formal definitions of linear dependence and linear independence.
- (§2.3) Understand how linear dependence tells you about redundency in a list of vectors.
- (§2.3) How do you prove that a list of vectors is linearly independent? Be comfortable with the proof template from class about this.
- (§2.3) If you already know that a list of vectors is linearly independent, how do you make use of this fact in a proof?
- (§6.1) Know the definition of the dot product as a sum of products of numbers.
- (§6.1) Know the geometric formula for dot product (in terms of $\cos \theta$). (You do not need to know the proof)
- (§6.1) How can you use dot products to measure *lengths* and *angles*?
- 1. (Textbook §2.3, problems 2-10 even)

(You may also want to work through 1-9 odd and check your answer in the back to practice) Determine whether or not the given set of vectors is linearly independent.

a)
$$\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-3 \end{bmatrix} \right\}$$
 b) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} 4\\2\\-6 \end{bmatrix}, \begin{bmatrix} -2\\-1\\3 \end{bmatrix} \right\}$
d) $\left\{ \begin{bmatrix} 3\\-3\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-2 \end{bmatrix}, \begin{bmatrix} -1\\3\\1 \end{bmatrix} \right\}$ e) $\left\{ \begin{bmatrix} -2\\-4\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\-4\\0\\4 \end{bmatrix}, \begin{bmatrix} -1\\-12\\2\\6 \end{bmatrix} \right\}$

- ♣ 2. (Textbook 2.3.35) Prove that two vectors u, v in Rⁿ are linearly dependent if and only if one is a scalar multiple of the other.
- **4** 3. (Textbook 2.3.36) Suppose that $S = {\vec{v_1}, \vec{v_2}, \vec{v_3}}$ is linearly independent and vectors $\vec{w_1}, \vec{w_2}, \vec{w_3}$ are defined by

$$\vec{w}_1 = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$$
, $\vec{w}_2 = \vec{v}_2 + \vec{v}_3$, and $\vec{w}_3 = \vec{v}_3$.

Show that $T = {\vec{w_1}, \vec{w_2}, \vec{w_3}}$ is linearly independent.

- ♣ 4. (Textbook 2.3.42, slightly reworded) Let $\vec{v}_1, \ldots, \vec{v}_k$ be linearly independent vectors in \mathbb{R}^n , and suppose A is an invertible $n \times n$ matrix. Define vectors $\vec{w}_i = A\vec{v}_i$, for $i = 1, \ldots, k$.
 - (a) Show that the vectors $\vec{w}_1, \ldots, \vec{w}_k$ are linearly independent.
 - (b) Give a specific example, using a 2×2 matrix, to show that if we don't assume that A is invertible, then part (a) is not necessarily true.

5. (Textbook 6.1.1-4)
Let
$$\vec{u} = \begin{bmatrix} 0\\1\\3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 1\\1\\-3 \end{bmatrix}$. Compute:
a) $\vec{u} \cdot \vec{v}$ b) $\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}$ c) $\vec{u} \cdot (\vec{v} + 2\vec{w})$ d) $\frac{\vec{u} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}$

6. (Textbook 6.1.11-16)

Let
$$\vec{u} = \begin{bmatrix} -3\\ -2\\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} -1\\ -1\\ -3 \end{bmatrix}$.

- a) Find $\|\vec{u}\|$.
- c) Find a length-one vector in the direction of \vec{u} .
- \vec{v} with length 3.
- b) Find the distance between \vec{u} and \vec{v} .
- d) Find the cosine of the angle between the two vectors.
- e) Find a vector in the opposite direction of f) Find a vector \vec{w} that is orthogonal to both \vec{u} and \vec{v} .