Study guide

- (§3.3) Know the definition of a basis. Understand why both parts (spanning, and linear independence) are included.
- (§3.3) Be able to determine whether a given subset of a specific vector space is a basis.
- (§3.3) Be able to find the basis of a subspace defined by several free variables (e.g. problem 3.3.20).
- (§3.3) Be able to find a basis for a span of a set of vectors in \mathbb{R}^n (e.g. problem 3.3.26).
- (§3.3) Know the definition of *dimension*. Make sure you understand the definition, and why it captures the intuitive idea of "degrees of freedom."
- (§3.3) Be familiar with the "standard bases" for $\mathbb{R}^n, \mathcal{P}_d$, and $M_{2\times 2}$.
- 1. (Textbook 3.3.12) Show that the set $S = \{x^2 + 1, x + 2, -x^2 + x\}$ is a basis for the vector space \mathcal{P}_2 .
- $2. \ ({\rm Textbook}\ 3.3.20)$

The set $S = \left\{ \begin{bmatrix} a & a+d \\ a+d & d \end{bmatrix} | a, d \in \mathbb{R} \right\}$ is a subspace of $M_{2\times 2}$. Find a basis for S, and state its dimension.

- 3. (Textbook §3.3, problems 25-30)(You can check the odd-numbered problems at the back of the book)
- 4. (Textbook 3.3.38) Show that if $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ is a basis for the vector space V and c is a nonzero scalar, then $S' = {c\vec{v_1}, c\vec{v_2}, \dots, c\vec{v_n}}$ is also a basis for V.
- 5. (Textbook 3.4.40) Find a basis for the subspace $S = \{ \mathbf{x} \in \mathbb{R}^4 \mid A\mathbf{x} = \mathbf{0} \}$ of \mathbb{R}^4 , where

				3	
A =	-1	0	-1	-1	
	2	0	2	1	

- 6. Suppose that A is an $n \times n$ matrix. Let $W \subseteq M_{n \times n}$ denote the set of matrices B such that AB = BA (that is, A and B commute). You showed on the previous problem set that W is a subspace of $M_{2\times 2}$. Prove that dim $W \ge 2$.
- 7. Suppose that $B = {\vec{u}, \vec{v}}$ is a basis for a vector space V. Prove that ${3\vec{u} + 2\vec{v}, \vec{u} + \vec{v}}$ is also a basis for V