INDUCTION

Discussion

Axiom 1 (Principle of induction). Let $\mathcal{S} \subseteq \mathbb{N}$ have the following properties:
(1) $1 \in \mathcal{S}$
(2) For all $s \in \mathcal{S}, s+1 \in \mathcal{S}$.

Then $\mathcal{S}=\mathbb{N}$.
We use this axiom as follows: Suppose you want to show that a statement $P(n)$ is true for all $n \in \mathbb{N}$. (This notation means that you have a statement into which you can feed any natural number n, to get a statement $P(n)$ about n. You would like to verify that $P(n)$ is a true statement for each $n \in \mathbb{N}$.) To do this, you have to first prove that $P(1)$ is true (this is called the base case). Then you assume that $P(n)$ is true, and try to use that fact to prove that $P(n+1)$ is true (the inductive step).

What does this accomplish? The first step tells you that $1 \in \mathcal{S}$, where \mathcal{S} is the set of natural numbers n such that $P(n)$ is true. The second step tells you that if $n \in \mathcal{S}$, then $n+1 \in \mathcal{S}$. The axiom tells you that $\mathcal{S}=\mathbb{N}$, i.e. that $P(n)$ is true for all $n \in \mathbb{N}$.

Example. Suppose we would like to show that for all $n \geq 1$:

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

Base case: When $n=1$, we have $2 n-1=1$, so the left side is 1 , and the right side is $1^{2}=1$. So far, so good.

Inductive step: Suppose that for some $n \geq 1$, the claim is true. Let $S_{n}=1+3+\ldots+(2 n-1)$. We are interested in showing $S_{n+1}=(n+1)^{2}$, assuming that $S_{n}=n^{2}$. Now, $S_{n+1}=S_{n}+(2 n+1)$. We have assumed that $S_{n}=n^{2}$, so combining these facts gives $S_{n+1}=n^{2}+2 n+1=(n+1)^{2}$, completing the inductive step and thus the proof.

Exercises

(1) Prove that, for all $n \in \mathbb{N}$,

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

(2) Prove that for all $n \in \mathbb{N}$, the number $4^{n}+15 n-1$ is divisible by 9 .
(3) Using the triangle inequality, prove that if $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers, then

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

(4) Prove that for all $n \in \mathbb{N}$, the integer $6^{n}-1$ is divisible by 5 .
(5) Define a sequence $\left(a_{n}\right)$ as follows: Let $a_{1}=1$ and let $a_{n+1}=\sqrt{a_{n}+4}$ for $n \geq 1$. Prove that $\left(a_{n}\right)$ is an increasing, bounded sequence. Deduce that $\left(a_{n}\right)$ converges, and find its limit.

