Math 281: Combinatorics • (Folsom) Amherst College

Two Proofs of a First Theorem

Theorem. For any $n \in \mathbb{N}_{0}$, we have that

$$
\sum_{k=0}^{n} P(n, k)=n!\sum_{k=0}^{n} \frac{1}{k!} .
$$

Proof 1, Direct Proof. We have that

$$
\sum_{k=0}^{n} P(n, k)=\sum_{k=0}^{n} \frac{n!}{(n-k)!}=n!\sum_{k=0}^{n} \frac{1}{(n-k)!}=n!\sum_{j=0}^{n} \frac{1}{j!} .
$$

Here, we have used that

- $P(n, k)=n!/(n-k)$! for any n, k satisfying $0 \leq k \leq n$ and $n \in \mathbb{N}_{0}$,
- and we reindexed the last sum using $j=n-k$ (and since $0 \leq k \leq n$, we have that $0 \leq j \leq n)$.

Proof 2, Proof by Induction.
Base Case $(n=0)$: The LHS is:

$$
\sum_{k=0}^{0} P(0, k)=P(0,0)=1
$$

The RHS is:

$$
0!\sum_{k=0}^{0} \frac{1}{k!}=0!\cdot \frac{1}{0!}=1 \cdot 1=1 .
$$

Hence, LHS $=$ RHS for $k=0$.
Inductive Hypothesis: Assume the theorem holds for some fixed $n \geq 0$. That is,

$$
\sum_{k=0}^{n} P(n, k)=n!\sum_{k=0}^{n} \frac{1}{k!} .
$$

Now, we must show it holds for $n+1$. That is, we must show:

Claim.

$$
\sum_{k=0}^{n+1} P(n+1, k)=(n+1)!\sum_{k=0}^{n+1} \frac{1}{k!}
$$

To prove the claim, recall that

$$
P(n+1, k)=\underset{1}{(n+1)} P(n, k-1),
$$

for $1 \leq k \leq n+1$. We extract the $k=0$ term from the sum to start (because we can't apply the identity we just wrote down for $k=0$) and obtain

$$
\begin{aligned}
\sum_{k=0}^{n+1} P(n+1, k) & =P(n+1,0)+\sum_{k=1}^{n+1} P(n+1, k)=1+\sum_{k=1}^{n+1} P(n+1, k) \\
& =1+\sum_{k=1}^{n+1}(n+1) P(n, k-1)=1+(n+1) \sum_{k=1}^{n+1} P(n, k-1) \\
& =1+(n+1) \sum_{j=0}^{n} P(n, j)
\end{aligned}
$$

where at the last step we have reindexed the sum, with $j=k-1$ (and since $1 \leq k \leq n+1$, we have that $0 \leq j \leq n$).

Now we apply the Inductive Hypothesis to the sum in blue, to obtain

$$
1+(n+1) \sum_{j=0}^{n} P(n, j)=1+(n+1) \cdot n!\sum_{j=0}^{n} \frac{1}{j!}=1+(n+1)!\sum_{j=0}^{n} \frac{1}{j!},
$$

where we have also used that $(n+1) \cdot n!=(n+1)$!. Finally, we observe that

$$
1+(n+1)!\sum_{j=0}^{n} \frac{1}{j!}=(n+1)!\sum_{j=0}^{n+1} \frac{1}{j!},
$$

proving the claim. (This is because the " 1 " appearing before the first sum in the line above can be realized as the $j=n+1$ term in the second sum in the line above (namely $\left.(n+1)!\cdot \frac{1}{(n+1)!}=1\right)$.)

