MATH 350-01 MIDTERM 2 PRACTICE FALL 2018

NAME: So(ajriom

Read This First!

e Keep cell phones off and out of sight.

Do not talk during the exam.

You are allowed one page of notes, front and back. No other books, notes, calculators, cell
phones, communication devices of any sort, webpages, or other aids are permitted.

Please read each question carefully. Show ALL work clearly in the space provided. There is
an extra page at the back for additional scratchwork.

In order to receive full credit on a problem, solution methods must be complete, logical and
understandable.
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1. [8 points|] Let G, H be two groups. Prove that G x H is isomorphic to H x G.

Define p-GxH— HxG by
c_()( (gn) = (hg)

Obseve ot
c_P( (Quht) (Qz.,hzn
= 0( (3.0, hiho)
— U’lahz, 9102.)
= (h‘Jql) (hl. Q‘b)
= LP(M-,M)LP((O:, he)) .

o p ra (guup) homsmwphtom
0 o swiedie, inte \Flgle HxG, (h.g)=co( ()
P o injechn, Sinte
o((ah) = @ (gl & (h,a)=(he 4]
& 'm:hz g 939,
=7 (le’ll) = (@z‘ hz)
Sp © @ aw isowphion, and GxH = HxG
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2. [8 points| Prove that if G is a cyclic group, then there exists a surjective group homomorphism
¢:7Z—G.

Let g be a gunatnod G
Defe e Z—G by ell=g"
Tho i & a()og(g hom. sinee VYmu Gz,
o (mim) = g™'= g"g" = elm e(n).

¢ W sm,eaf-ruc since ¥/ q'eG, an7u,/9_9
(Mn@f “g&wmaﬂm)
o g'= 2k e ime
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3. [8 points| | Let R be a ring, and @ € R an element.

(a) Prove that if @ is not a zero-divisor, and b, ¢ € R satisfiy ab = ac, then b = c.

I ab=ac, Heu
ah-0c=ac-ac
=0g

= al(b-¢)=0r.
'MV\"’"CL ZD i+ &l(ow_\-l-haﬁ‘ b"c:O{Z,

Sinee A
hence b-c+¢ =0r *¢C
= b=cC

as deiced..

(b) Prove that if a is a zero-divisor, then there exist two elements b,c € R with b # ¢ but
ab = ac.
Cnce & wa 2N, JbeR s b#0z & ab=0r
(et ¢c=0r

Tlun ab= Oe= «0r =ac,
bk b+cC sinte we amumed Hiok
b+0g.
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4. [8 points| Suppose that G is an abelian group, and let H be the set of all elements of G with
finite order.

(a) Prove that H is a normal subgroup of G.

ulognoup -
closed undu widt  iFabel  Hua Amn ezt el

an____ s €ea. Honee sivce G Dabdidu,
(ah)™ = a™ b™ = (eq)"(ee)"= Cq
$O o(alo)(w"‘ = ookl <0 = abeH.

clotuu mdy v :
it aek, thes In€T sk a’=eq

Thew (@)= (V7= €5 =¢q,
Nmmal: SO a-‘ GH o) M‘(
1 g4 & g€ G, thou QWG'Z-L ¢+ a”=€a.
o (gad)"= 9ag'9ag’y - 9a4™= 90" = 9€aq = .
=@ =€o " S6 gag € H Gpwell
=) H i» ol 6.

(b) Prove that all elements of G/H besides the identity have infinite order.

Conidin any elumad Hge GIH, aud sppoic it
has finie odu. Then Tnelt sk

(Hg)* = €qy = Heés
= Hg"\:— Heq

=Y q"l e

= Jmez” ¢ (""" = eq
:> gnm___ eG
=) o(q)(f/) ;

S infack g el win H, e, Hg=Heg
S e only elamga of G/H of finite oy
i the idodty elamod of GIH.
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5. [8 points| Let ¢p : R — S be a surjective ring homomorphism.
(a) Define ker ¢.

len@ = {xe'R : ‘-0(?():08—}.

(b) Prove that ker ¢ is an ideal of R.

nonemytings : (00)=0s, 0 Og€hkuw. Soleuo # &

closuns u.ndu b wyelag, Him
o(x-y) = ol -ply) =05-05 <Os
0 %y lentp.

Sicley oy o X6 keme & aeR Hhou
plax) = laloi)=@lo) 05 = Os
'R\sa com™ & pla) =g Plal=05 @lal= Os
m\r\“) so OX &xo ot inlemw an wel
)’hﬂ”) (¢) Prove that if S is a ﬁ?then ker ¢ lb a mazximal ideal of R.

By e fund. Hm. 6L Ning howss., since @ 00 swiedug

¢ = R/l

We [WOWA n c\wvs-Hnak if T is comm wlunity, Hrak
an thad TeR is mavl iH RIT isa freld
Hence, since S an & Freld & Rl =6, lmce

wirbe a maxel ideal




