Math 350-01

MIDTERM 2 PRACTICE

FALL 2018

NAME: Solutions

Read This First!

- Keep cell phones off and out of sight.
- Do not talk during the exam.
- You are allowed one page of notes, front and back. No other books, notes, calculators, cell
 phones, communication devices of any sort, webpages, or other aids are permitted.
- Please read each question carefully. Show ALL work clearly in the space provided. There is an extra page at the back for additional scratchwork.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.

Grading - For Instructor Use Only

Question:	1	2	3	4	5	Total
Points:	8	8	8	8	8	40
Score:						

This page intentionally left blank. You may use it for scratchwork.

1. [8 points] Let G, H be two groups. Prove that $G \times H$ is isomorphic to $H \times G$.

Define
$$\varphi: GxH \rightarrow HxG$$
 by
$$\varphi((g,h)) = (h,g).$$
Observe that
$$\varphi((g_1,h_1)(g_2,h_2))$$

$$= \varphi((g_1g_2,h_1h_2))$$

$$= (h_1g_1)(h_2,g_2)$$

$$= (h_1,g_1)(h_2,g_2)$$

$$= \varphi((g_1,h_1))\varphi((g_2,h_2)).$$
So φ is a (q_0up) homomorphism
$$\varphi \text{ is surjective, since } \forall (h_1g) \in HxG_1(h_1g) = (p((g,h_1)).$$

$$\varphi \text{ is injective, since } \varphi((g_1,h_1)) = \varphi((g_2,h_2)) \Leftrightarrow (h_1g_1) = (h_2,g_2)$$

$$= (g_1,h_1) = (g_2,h_2).$$
So φ is an isomorphism, and $GxH \cong HxG$.

2. [8 points] Prove that if G is a cyclic group, then there exists a surjective group homomorphism $\phi: \mathbb{Z} \to G$.

Define
$$\varepsilon: \mathbb{Z} \longrightarrow G$$
 by $\varepsilon(n) = g^n$

This is a group home since
$$\forall m, n \in \mathbb{Z}$$
,

$$e(m+n) = g^{m+n} = g^m g^n = e(m) e(n)$$

so
$$g' = e(n) \in im \varphi$$
.

- 3. [8 points] Let R be a ring, and $a \in R$ an element.
 - (a) Prove that if a is not a zero-divisor, and $b, c \in R$ satisfy ab = ac, then b = c.

If
$$ab=ac$$
, then
$$ab-ac=ac-ac$$

$$= OR$$

$$=) a(b-c) = OR.$$
Since a isn't a ZD, it follows that $b-c=OR$,
hence
$$b-c+c = OR + C$$

$$=) b = C$$
as desired.

(b) Prove that if a is a zero-divisor, then there exist two elements $b, c \in R$ with $b \neq c$ but ab = ac.

Since a via
$$\geq D$$
, $\exists b \in \mathbb{R}$ st. $b \neq O_{\mathbb{R}}$ & $ab = O_{\mathbb{R}}$
Let $c = C_{\mathbb{R}}$.
Then $ab = O_{\mathbb{R}} = a \cdot O_{\mathbb{R}} = ac$,
but $b \neq c$ since we assumed that $b \neq c$.

- 4. [8 points] Suppose that G is an abelian group, and let H be the set of all elements of G with finite order.
 - (a) Prove that H is a normal subgroup of G.

Sulognoup:

closed under mult: if a,b \in H, then $\exists m, n \in \mathbb{Z}^+ \omega I$ $a^m = b^n = e_G. \text{ Hence since } G \text{ is abelian,}$ $(ab)^{mn} = a^{mn} b^{mn} = (e_G)^n (e_G)^m = e_G.$ so $o(ab) \mid mm \Rightarrow o(ab) < on \Rightarrow ob \in H.$

closure under inverse: if a eH, then $\exists n \in \mathbb{Z}^+$ st. $a^n = e_G$. Then $(a^{-1})^n = (a^n)^{-1} = e_G^{-1} = e_G$. So a^{-1} eH as well.

Normal: If a st 8 $g \in G$, then $\exists n \in \mathbb{Z}^+$ st $a^n = ea$. So $(qag^i)^n = qag^i gag^i g \dots gag^i = qa^ng^i = geag^i = ea$. So $qag^i \in H$ as well.

(b) Prove that all elements of G/H besides the identity have infinite order.

Consider any element $Hg \in G/H$, and suppose it has finite order. Then $\exists n \in \mathbb{Z}^+$ st.

$$(Hg)^{n} = e_{g/H} = He_{g}.$$

$$= \Rightarrow Hg^{n} = He_{g}$$

$$= \Rightarrow g^{n} \in H$$

$$= \Rightarrow \exists m \in \mathbb{Z}^{+} \text{ st. } (g^{n})^{m} = e_{g}$$

$$= \Rightarrow g^{nm} = e_{g}$$

$$= \Rightarrow o(g) < co$$

So in fact g itself is in H, ie. $Hg = He_{G}$. So the only element of G/H of finite order is the identity element of G/H.

- 5. [8 points] Let $\phi: R \to S$ be a surjective ring homomorphism.
 - (a) Define $\ker \phi$.

and Risa comm)

$$\ker \varphi = \{ x \in \mathbb{R} : \varphi(x) = 0_s \}.$$

(b) Prove that $\ker \phi$ is an ideal of R.

nonemptiness: $\varphi(0e)=0s$, so $0e+ku\varphi$. So $ku\varphi\neq\varnothing$.

closure under -: if x,y & leerve, then

$$\varphi(x-y) = \varphi(x) - \varphi(y) = O_S - O_S = O_S,$$

so x-y Eleny.

stidey property: if x6 kence & a eR, then

$$\varphi(\alpha x) = \varphi(\alpha)\varphi(x) = \varphi(\alpha) \cdot O_S = O_S$$

&
$$\varphi(xa) = \varphi(x)\varphi(a) = O_S \cdot \varphi(a) = O_S$$

so ax & xa are in lease as well.

ning w unity (c) Prove that if S is a field, then $\ker \phi$ is a maximal ideal of R.

By the fund. thm. of sing homs., since & is surjective,

We moved in class that if R is comm whenity, that an ideal ISR is max'l iff RII is a freld.

Hence, since S is a freld & Rlhue≅S, knee must be a maxil ideal.