- **Read:** §16.
- **Suggestion:** Work (or think about) the following problems. Problems marked with a * have answers given at the back of the book.
 - §16:2*,4*,11*
- 1. Let Aut G denote the set of all automorphisms of a group G, and let \circ denote composition of functions (recall that an automorphism is an isomorphism from a group to itself). Prove that (Aut G, \circ) is a group. This is called the *automorphism group* of the group G.
- 2. Let R be a ring with 1_R (ring with unity). Prove that $(-1_R) \cdot a = -a$. Recall: -a denotes the additive inverse of a.
- 3. Let K denote the set of all real numbers of the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Q}$. Prove that K forms a field, when equippied with the usual addition and multiplication from \mathbb{R} .
- 4. Call an element a of a ring R idempotent if $a^2 = a$ (in a ring, a^2 is shorthand for $a \cdot a$). Call a ring Boolean if every element is idempotent. Prove that if R is a Boolean ring, then
 - (a) for all $a \in R$, $a + a = 0_R$, and
 - (b) R is commutative.

Hint for (a): consider the expression $(r+r)^2$.

- 5. Prove that in the trivial ring (ring with one element), 0_R is a unit, but that in any other ring it is not a unit. (This shows that for a ring R, (R, \cdot) is never a group, except when R is the trivial ring.)
- 6. (a) List the elements of the unit group \mathbb{Z}_{20}^{\times} of the ring \mathbb{Z}_{20} .
 - (b) Find the inverse and the order of each element in \mathbb{Z}_{20}^{\times} .
 - (c) (Bonus, for extra credit) Prove that $\mathbb{Z}_{20}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.
- 7. Let F be a field. Use the notation $\frac{a}{b}$ to denote ab^{-1} , for any $a, b \in F$ with $b \neq 0_F$. Prove that for any $a, b, c, d \in F$ with $b, d \neq 0_F$, the usual addition formula for fractions holds:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

8. Suppose that F is a field with four elements, labeled $\{0, 1, a, b\}$ (here $0 = 0_F$ is the additive identity and $1 = 1_F$ is the multiplicative identity). Fill out the following charts to determine the addition table and multiplication table for F. In your submission, it is not necessary to write a full formal proof that your answer is the only way to do it, but briefly summarize (in a paragraph or so) how you found the tables.

Suggestion: There are many ways to proceed, so just try things out and don't be afraid of a little trial and error. A good way to start is to fill out as much as you can using basic properties of 1 and 0. After that, remember that F^{\times} is a group, and note that the distributive property will force your hand in a number of places.

- 9. Let G be a cyclic group of order n. Problem 3 on the previous problem set showed a particular way to construct some automorphisms of G. The purpose of the problem is to show that we have in fact constructed all of them.
 - (a) Prove that if $\phi: G \to G$ is any automorphism of G, then there exists an integer k such that $\phi(g) = g^k$ for all $g \in G$.
 - (b) Prove that if ϕ and k are as in part a, then (k, n) = 1. (Ask me for a hint if you are stuck.)
 - (c) (Bonus; for extra credit) Prove that Aut $G \cong \mathbb{Z}_n^{\times}$ (the unit group of the ring \mathbb{Z}_n).