The first block are the “official” axioms and inference rule for our propositional calculus. The remaining lines are all facts that can be proved from these axioms and inference rules, and which we are free to use as inference rules in “abbreviated deductions.” Most of these were given names in class, listed in the “shorthand” column. Some of them were stated in class or homework but not officially given a shorthand. For easier reference, I have given each one a shorthand below; those marked with an asterisk are those that were not given a shorthand in class.

<table>
<thead>
<tr>
<th>Shorthand</th>
<th>Hypotheses</th>
<th>Conclusion</th>
<th>Rule name</th>
<th>proved</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1)</td>
<td>$\emptyset \vdash_p \alpha \lor \alpha \rightarrow \alpha$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P2)</td>
<td>$\emptyset \vdash_p \alpha \rightarrow \alpha \lor \beta$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P3)</td>
<td>$\emptyset \vdash_p \alpha \lor \beta \rightarrow \beta \lor \alpha$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P4)</td>
<td>$\emptyset \vdash_p (\beta \rightarrow \gamma) \rightarrow (\alpha \lor \beta \rightarrow \alpha \lor \gamma)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MP)</td>
<td>$\alpha, \alpha \rightarrow \beta \vdash_p \beta$</td>
<td></td>
<td>modus ponens</td>
<td></td>
</tr>
<tr>
<td>(EXP)</td>
<td>$\alpha, \lnot \alpha \vdash_p \beta$</td>
<td></td>
<td>explosion</td>
<td>2/26</td>
</tr>
<tr>
<td>(COMP)</td>
<td>$\alpha \rightarrow \beta, \beta \rightarrow \gamma \vdash_p \alpha \rightarrow \gamma$</td>
<td></td>
<td>composition</td>
<td>2/26</td>
</tr>
<tr>
<td>(CW)</td>
<td>$\alpha \rightarrow \gamma, \beta \rightarrow \gamma \vdash_p \alpha \lor \beta \rightarrow \gamma$</td>
<td></td>
<td>casework</td>
<td>2/28</td>
</tr>
<tr>
<td>(CONTRA1)</td>
<td>$\alpha \rightarrow \lnot \beta \vdash_p \beta \rightarrow \lnot \alpha$</td>
<td></td>
<td>contrapositive</td>
<td>2/28</td>
</tr>
<tr>
<td>(CONTRA2)*</td>
<td>$\alpha \rightarrow \beta \vdash_p \lnot \beta \rightarrow \lnot \alpha$</td>
<td></td>
<td>”</td>
<td>PS5 4</td>
</tr>
<tr>
<td>(EM1)</td>
<td>$\emptyset \vdash_p \lnot \alpha \lor \alpha$</td>
<td></td>
<td>excluded middle</td>
<td>2/28</td>
</tr>
<tr>
<td>(EM2)</td>
<td>$\emptyset \vdash_p \alpha \lor \lnot \alpha$</td>
<td></td>
<td>”</td>
<td>2/28</td>
</tr>
<tr>
<td>(DN1)</td>
<td>$\emptyset \vdash_p \alpha \rightarrow \lnot \lnot \alpha$</td>
<td></td>
<td>double negation</td>
<td>2/28</td>
</tr>
<tr>
<td>(DN2)</td>
<td>$\emptyset \vdash_p \lnot \alpha \rightarrow \alpha$</td>
<td></td>
<td>”</td>
<td>3/1</td>
</tr>
<tr>
<td>(RAA)</td>
<td>$\alpha \rightarrow \beta, \alpha \rightarrow \lnot \beta \vdash_p \lnot \alpha$</td>
<td></td>
<td>reductio ad absurdum</td>
<td>3/1</td>
</tr>
<tr>
<td>(RAA – 2)*</td>
<td>$\lnot \alpha \rightarrow \beta, \alpha \rightarrow \lnot \beta \vdash_p \alpha$</td>
<td></td>
<td>”</td>
<td>3/1</td>
</tr>
<tr>
<td>(IH)</td>
<td>$\emptyset \vdash_p \beta \rightarrow (\alpha \rightarrow \beta)$</td>
<td></td>
<td>intro. of hypothesis</td>
<td>3/4</td>
</tr>
<tr>
<td>(MPH)</td>
<td>$\alpha \rightarrow \gamma, \alpha \rightarrow (\gamma \rightarrow \delta) \vdash_p \alpha \rightarrow \delta$</td>
<td></td>
<td>MP w/ hypothesis</td>
<td>3/4</td>
</tr>
<tr>
<td>(P2.5)</td>
<td>$\emptyset \vdash_p \alpha \lor \beta \lor \alpha$</td>
<td></td>
<td>PS4 5(b)</td>
<td></td>
</tr>
<tr>
<td>(P4.5)</td>
<td>$\emptyset \vdash_p (\beta \rightarrow \gamma) \rightarrow (\beta \lor \alpha \rightarrow \gamma \lor \alpha)$</td>
<td></td>
<td>(omitted)</td>
<td></td>
</tr>
<tr>
<td>(\land1)*</td>
<td>$\emptyset \vdash_p \alpha \land \beta \rightarrow \alpha$</td>
<td></td>
<td>PS5 2(a)</td>
<td></td>
</tr>
<tr>
<td>(\land2)*</td>
<td>$\emptyset \vdash_p \alpha \land \beta \rightarrow \beta$</td>
<td></td>
<td>PS5 2(b)</td>
<td></td>
</tr>
<tr>
<td>(\land3)*</td>
<td>$\emptyset \vdash_p \alpha \rightarrow (\beta \rightarrow \alpha \land \beta)$</td>
<td></td>
<td>PS5 2(c)</td>
<td></td>
</tr>
<tr>
<td>(ASSOC1)*</td>
<td>$\emptyset \vdash_p (\alpha \lor \beta) \lor \gamma \rightarrow \alpha \lor (\beta \lor \gamma)$</td>
<td></td>
<td>PS5 3(a)</td>
<td></td>
</tr>
<tr>
<td>(ASSOC2)*</td>
<td>$\emptyset \vdash_p \alpha \lor (\beta \lor \gamma) \rightarrow (\alpha \lor \gamma) \lor \gamma$</td>
<td></td>
<td>PS5 3(b)</td>
<td></td>
</tr>
<tr>
<td>(CH)*</td>
<td>$\alpha \rightarrow (\beta \rightarrow \gamma) \vdash_p \alpha \land \beta \rightarrow \gamma$</td>
<td></td>
<td>comb. of hypotheses</td>
<td>PS5 6(a)</td>
</tr>
<tr>
<td>(SH)*</td>
<td>$\alpha \land \beta \rightarrow \gamma \vdash_p \alpha \rightarrow (\beta \rightarrow \gamma)$</td>
<td></td>
<td>sep. of hypotheses</td>
<td>PS5 6(b)</td>
</tr>
<tr>
<td>(RH)*</td>
<td>$\alpha \rightarrow (\beta \rightarrow \gamma) \vdash_p \beta \rightarrow (\alpha \rightarrow \gamma)$</td>
<td></td>
<td>reorder hypotheses</td>
<td>3/27</td>
</tr>
</tbody>
</table>

In addition to all of these inference rules, we also have an important meta-theorem, the “Propositional Deduction Theorem” (PDT), proved in class on 3/4, which says:

\[
(PDT) \quad \Gamma, \alpha \vdash_p \beta \iff \Gamma \vdash_p \alpha \rightarrow \beta.
\]

It is worth noting that the rules above include a mixture of deductions with hypotheses and without hypotheses. Once we have proved the PDT, many of these rules can be (arguably) more legibly stated by moving some hypotheses from the right to the left side of the turnstile. For example:
\[\alpha \lor \beta \vdash_P \beta \lor \alpha \quad (\text{P3 + PDT}) \]
\[\alpha \vdash_P \neg \neg \alpha \quad (\text{DN1 + PDT}) \]
\[\alpha, \beta \vdash_P \alpha \land \beta \quad (\land 3 + \text{PDT}) \]

The reason we did not originally state all rules in this format is that we need to prove the PDT first, and many of the rules stated above were proved in order to prove the PDT itself.