1. Prove that if L/K is a finite field extension, and $\phi: K \to \Omega$ is a nonzero field homomorphism from K to an algebraically closed field Ω , then there exists an extension of K to L. That is, there exists a field homomorphism $\psi : L \to \Omega$ such that $\psi|_K = \phi$.

Hint First consider the case where L/K is a simple extension. Then use induction to obtain the general result.

2. Prove the following extension of Problem 7 on PSet 4: if L/K is a finite extension in $\mathbb{C},$ $\alpha \in L$, and α' is a K-conjugate of α , then there exists a K-homomorphism (not necessarily unique) $\phi: L \to \mathbb{C}$ such that $\phi(\alpha) = \alpha'$.

This problem did not originally specify "K-homomorphism," so it is okay if you do not prove that your homomorphism fixed K . On the other hand, you may assume in subsequent problems that you've proved the version of the problem stated above.

- 3. Recall that we called a field extension L/K Galois if, for every $\alpha \in L$, all K-conjugates $\alpha' \in \mathbb{C}$ of α are also in L. This definition can be unwieldy since there are infinitely many choices of α . Show that it suffices to check only α in a generating set. That is: if $L = K(\alpha_1, \dots, \alpha_n)$, and L contains all K-conjugates of $\alpha_1, \dots, \alpha_n$, then L is Galois.
- 4. Prove that a degree 2 field extension in $\mathbb C$ is always Galois.
- 5. We showed in class that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois. Show that $\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}$, however, is Galois. What is the degree of that extension?