- 1. As we've discussed in class, the cyclotomic extension $\mathbb{Q}(\zeta_n)$ has Galois group $\Gamma(\mathbb{Q}(\zeta_n)/Q) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, where the element $a + n\mathbb{Z}$ corresponds to the automorphism characterized by $\zeta_n \mapsto \zeta_n^a$. Call this automorphism ϕ_a (note that $\phi_a = \phi_{a'}$ if $a \equiv a' \mod n$). Consider the order-two subgroup $H = \{\phi_1, \phi_{-1}\}$. Prove that for p prime, $H^{\dagger} = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$, and that $[\mathbb{Q}(\zeta_p) : H^{\dagger}] = 2$. (This should also be true for nonprime n, and you may find that your proof works just as well in that case.)
- 2. This problem is meant to add some specificity to a vague step in our characterizaton of constructible points in the plane. Let $a, b \in \mathbb{C}$ be two distinct points. Prove that the line connecting a and b consists of all complex numbers z such that $z a = \lambda(b a)$ for some *real* number λ , and this in turn is equivalent to the equation

$$(\overline{a} - \overline{b})z - (a - b)\overline{z} = \overline{a}b - a\overline{b}.$$

Conclude that the line is characterized by an equation $\overline{z} = uz + v$, where $u, v \in \mathbb{Q}(a, b, \overline{a}, \overline{b})$.

- 3. Prove, as asserted in class, that if gcd(m,n) = 1, then there exists integers u, v such that $\zeta_{mn} = \zeta_m^u \zeta_n^v$. Deduce that $\mathbb{Q}(\zeta_{mn}) = \mathbb{Q}(\zeta_m, \zeta_n)$.
- 4. Textbook exercise 7.8 (p. 96)
- 5. Textbook exercise 8.3 (p. 120; see p. 111 for a definition of elementary symmetric polynomials)
- 6. Textbook exercise 8.7
- 7. Textbook exercise 8.8