
Problem Set 7 Math 410, Fall 2024

1. (Textbook 9.1 and 9.2)
Determine splitting fields over Q for the polynomials t3 − 1, t4 + 5t2+ 6, t6 − 8, in the form
Q (α1, . . . , αk) for explicit αj , and determine the degree over Q in each case.

2. (Textbook 9.5 (b-e))
Which of the following extensions are Galois? (The statement in the book says “normal”
here, but this is equivalent to “normal” for subfields of C.)

(b) Q(
√
−5)/Q

(c) Q(α)/Q where α is the real seventh root of 5.

(d) Q(
√
5, α)/Q(α), where α is as in (c).

(e) R(
√
−7)/R

3. Determine the Galois group of the splitting field of t3 − 3t+ 1 over Q.

4. Suppose that f ∈ K[t] is a quartic polynomial over a subfield K ⊆ C, with roots α1, α2, α3, α4

in C. Suppose that the symmetric group of f over K consists of the following four permuta-
tions (these form the Klein 4-group).

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .

Here, we identify the roots with the numbers 1, 2, 3, 4. Define u2 = α1 + α2 − α3 − α4,
u3 = α1 − α2 + α3 − α4, and u4 = α1 − α2 − α3 + α4. Prove that u2, u3, u4 are eigenvectors
for each element of the Galois group, with eigenvalues ±1. Conclude that u22, u

2
3, u

2
4 ∈ K, and

hence that the splitting field of f is a radical extension of K.

Note This seemingly ad hoc construction can be generalized to any abelian Galois
group as follows. For a finite abelian group G, define the dual group Ĝ to be the
group of “characters,” i.e. group homomorphisms χ : G → C∗. Fix a root α of the
polynomial in question, and define elements uχ =

∑
g∈G χ(g) g(α). Then one can show

that g(uχ) = χ(g)−1 uχ, and the elements uχ generate all the roots in the orbit of α.
The Fourier transform we used while discussing the cubic formula is another example
of this construction.
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