1. (Textbook 9.1 and 9.2)

Determine splitting fields over \mathbb{Q} for the polynomials $t^3 - 1$, $t^4 + 5t^2 + 6$, $t^6 - 8$, in the form $\mathbb{Q}(\alpha_1, \ldots, \alpha_k)$ for explicit α_j , and determine the degree over \mathbb{Q} in each case.

2. (Textbook 9.5 (b-e))

Which of the following extensions are Galois? (The statement in the book says "normal" here, but this is equivalent to "normal" for subfields of \mathbb{C} .)

- (b) $\mathbb{Q}(\sqrt{-5})/\mathbb{Q}$
- (c) $\mathbb{Q}(\alpha)/\mathbb{Q}$ where α is the real seventh root of 5.
- (d) $\mathbb{Q}(\sqrt{5}, \alpha)/\mathbb{Q}(\alpha)$, where α is as in (c).
- (e) $\mathbb{R}(\sqrt{-7})/\mathbb{R}$
- 3. Determine the Galois group of the splitting field of $t^3 3t + 1$ over \mathbb{Q} .
- 4. Suppose that $f \in K[t]$ is a quartic polynomial over a subfield $K \subseteq \mathbb{C}$, with roots $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in \mathbb{C} . Suppose that the symmetric group of f over K consists of the following four permutations (these form the Klein 4-group).

$$\{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)\}.$$

Here, we identify the roots with the numbers 1, 2, 3, 4. Define $u_2 = \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4$, $u_3 = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4$, and $u_4 = \alpha_1 - \alpha_2 - \alpha_3 + \alpha_4$. Prove that u_2, u_3, u_4 are eigenvectors for each element of the Galois group, with eigenvalues ± 1 . Conclude that $u_2^2, u_3^2, u_4^2 \in K$, and hence that the splitting field of f is a radical extension of K.

Note This seemingly ad hoc construction can be generalized to any abelian Galois group as follows. For a finite abelian group G, define the dual group \hat{G} to be the group of "characters," i.e. group homomorphisms $\chi : G \to \mathbb{C}^*$. Fix a root α of the polynomial in question, and define elements $u_{\chi} = \sum_{g \in G} \chi(g) g(\alpha)$. Then one can show that $g(u_{\chi}) = \chi(g)^{-1} u_{\chi}$, and the elements u_{χ} generate all the roots in the orbit of α . The Fourier transform we used while discussing the cubic formula is another example of this construction.