
Problem Set 9 Math 42, Spring 2015

This assignment looks longer than it is, simply because the setup for some of the problems is quite
wordy. Do not be intimidated by this; the actual math to be done is not long.

1. Suppose that there are 1000 switches in a row (numbered 1 to 1000), each of which is initially
in the “off” position. One thousand gnomes (numbered 1 through 1000) enter the room
one by one, and each gnome flips some of the switches before leaving. Gnome 1 flips every
switch, gnome 2 flips every even-numbered switch, gnome 3 flips every switch numbered with
a multiple of 3, and so on. How many switches will be in the “on” position when all 1000
gnomes have passed through?
Hint. First try working out what happens to the first 30 or so switches, and look for a pattern.

2. Recall that in RSA, the “public key” is a pair (m, e) (the modulus and the encrypting ex-
ponent), and the “private key” is a number f (the deciphering exponent) that is chosen so
that

ef ≡ 1 (mod φ(m)).

Euler’s theorem guarantees that for any s relatively prime to m, sef ≡ s (mod m), which is
the key fact that allows the recipient to decrypt messages.

(a) Show that if the modulus m is equal to a product pq of two different primes (as it is in
RSA), then in fact sef ≡ s (mod m)) for all integers s, not just those relatively prime
to m.
Hint. Use the Chinese Remainder Theorem, and consider the two primes separately.

(b) Suppose that m = 45, e = 5, and f = 5. Show that ef ≡ 1 (mod φ(m)), but that there
is an integer s such that sef 6≡ s (mod m).

Note. In fact, the congruence sef ≡ s (mod m) (needed for RSA to work) is valid (for all s,
not just those coprime to m) if and only if m is “square free,” meaning that it is not divisible
by any squares besides 1. I encourage you to try to prove this.

3. Digital Signatures.
The main application of RSA is encryption, where one agent wishes to send a message to
another agent (across a public channel) without eavesdroppers being able to tell what the
message says. This problem discusses a second application, where RSA is used for authen-
tication. Now the goal is not to keep a message secret, but instead to allow the recipient
to verify that the message has not been forged by a third party. This problem describes a
simplified version of RSA signatures. Once we’ve covered chapters 28 and 29, we’ll discuss a
signature algorithm that is more common in practice.

Suppose that Alice has a public key (m, e), and that only she knows the private key f . Alice
wishes to send a non-secret message s to Bob (where s is an integer between 0 and m − 1
inclusive). Meanwhile, a third agent, Mallory, has forged her own version of the message s
(which might, for example, contain a virus).

Bob receives both versions of s, but he cannot tell which sender is Alice and which is Mallory.
In order to resolve this conundrum, he announces the following: each sender must send him
a second number, t (called the “signature”). Bob will compute te mod m (where (m, e) is
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Alice’s public key). If he discovers that te ≡ s (mod m), he will conclude that that message
s was legitimate. Otherwise he will regard it as a forgery.

(a) What should Alice do to compute the number t? (This computation is called “signing”
the message.)

(b) Why isn’t Mallory able to forge a signature for her fake message s?

Note 1. This method of authenticating messages does have a security flaw: Mallory could
choose t first, and then simply compute s from it. The pair (s, t) would then appear to Bob
as a legitimate signed message from Alice. The downside for Mallory is that she doesn’t get
to decide what s says, so it will almost certainly be gibberish (which will clue Bob in that
it’s not from Alice after all). However, this flaw can be eliminated using something called a
“hash function.”

Note 2. The security of this system depends on the fact that Bob can have faith that (m, e)
really is Alice’s public key. So the integrity of the public key must be verified in advance.
This is sometimes achieved by having a trusted third party, named Trent, meeting Alice in
person (sometimes at an event called a “key signing party”) and then signing her public key.
This ensures that anyone with faith in Trent’s public key can also have faith in Alice’s public
key.

4. (a) For each prime number p less than 20, make a list of the quadratic residues and quadratic
non-residues of p.

(b) Let A(p) denote the sum of the quadratic resides modulo p, and let B(p) denote the sum
of the non-resides. Compute A(p) and B(p) for all primes less than 20. For which of
these primes does A(p) equal B(p)?

(c) Make a conjecture about which primes p have A(p) = B(p).

Due Friday 3 April in class. page 2 of 2


